

2010/SOM1/EC/SEM/002

Agenda Item: 1a

Macro-Economic Effects of Telecoms Reform

Submitted by: University of Hong Kong

Seminar on Impacts of Structural Reform and Leaders' Agenda to Implement Structural Reform Stocktake Hiroshima, Japan 25 February 2010

APEC Economic Committee

"Seminar on Structural Reform and LAISR Stock-take" Hiroshima, Japan 25 February 2010

Macro-economic effects of Telecoms Reform

John Ure

Associate Professor and Director
Telecommunications Research Project (TRP)
University of Hong Kong
http://www.trp.trpc.com.hk/

Director, TRPC Pte Ltd (Singapore) http://www.trpc.com.hk/

Agenda

- 1. Macro-economic impact of telecom reforms
 - Investment
 - Employment
 - Trade
- 2. Reform and the state of telecoms
 - Carriers
 - Network equipment vendors
 - CPE or Access Devices
- 3. The impact on telecoms

Macro-economic Impacts

- Telecom typically contributes 2-4% of GDP in OECD countries
 - Telecoms employment is typically < 1%
 - Telecoms is capital-intensive and potentially high value-added
 - Telecoms has enormous network effects across the economy
- Social Overhead Capital = name sometimes given to infrastructure supporting social capital (education, health, housing, security, transport, utilities, etc)
 - Evidence suggests that in the case of a <u>networked</u> industry like telecoms, there is a positive relationship between
 - · multiplier effects of investment
 - · accumulated social overhead capital, but the threshold is lower for mobile

Telecom services contribution

- Broadband/smartphones driving next generation
 Web applications, content, cloud computing, etc. = ancillary sectors of investment and employment
 - Low-data usage:
 - · M-banking, m-payments, m-remittances
 - · VoIP, SMS, LBS, GPS, etc
 - Medium-data usage:
 - search and progressive download, social networking, enterprise software applications, etc.
 - Heavy-data usage:
 - Real time streamed video, MMORPG (massive multiplayer online role-playing games), etc.

Structural Reform Impacts

- Corporatization = off the state books → market-focused
 - Key issue = how independent of the Ministry of Finance?
 - Key issue = how independent is the regulator?
- Privatization = new sources of capital + restructuring/accelerated technological unemployment
 - Key issue = how to manage the transition/fall in direct employment?
 - Key issue = can outsourcing of employment/non-core activities ('off-the-books') be a step towards a more efficient use of resources?

References:

- John Ure (2003) 'Telecommunications Privatization: evidence and some lessons' paper delivered to APDIP/UNDP Asia Forum on ICT Policies and e-Strategies, http://www.trp.trpc.com.hk/papers/2003/apdip_031017-2.pdf
- 2. John Ure and Araya Vivorakij 'Privatization of Telecoms in Asia' in in Wu Rong-I and Yun-Peng Chu, eds. (1997) Business Markets and the Government in the Asia-Pacific, Addison Wesley Longman, South Melbourne. (pp.237-263) see

http://www.trp.trpc.com.hk/publications/private1.pdf

Structural Reform Impacts

- Liberalization = competition = the critical issue, but different models
 - Free market entry (e.g. open licensing regime)
 - Restricted market entry (e.g. limited licensing/national/ ownership restrictions)
 - Competition between state-owned telecom enterprises (SOTEs)
 - Industrial policy
 - Creates dynamic efficiencies (social overhead capital; pays the entry costs into new technologies; etc) ... or ...undermines the allocative efficiency of the market? [How, realistically, is it possible to measure the opportunity cost here?]

For discussion of role of competition see John Ure and Araya Vivorakij Telecommunications and Privatization in Asia' in D.Ryan ed. (1977) *Telecommunications: Privatization and Competition*, Philadelphia: Temple University Press (pp.1-20) http://www.trp.trpc.com.hk/papers/1997/privtier_2004.pdf

Reform: what impact has liberalization had upon innovation, market growth, trade and investment and therefore overall employment?

Fixed Network Investment

- In 1996 Roller & Waverman = first to quantify the economic impact of telecoms on economic growth
 - Elasticity of GDP growth rises along with the stock of accumulated telecoms investment = higher in developed than in developing countries – examples

	Teledensity	Impact of 10% investment
OECD	30%	2.8% increase in GDP
average		
USA	40%	7.8% increase in GDP

See: Roller & Waverman (2001) 'Telecommunications Infrastructure and Economic Development: A Simultaneous Approach' *American Economic Review*, V.9.4 pp.909–923; for others, see for example, http://www.nipfp.org.in/working_paper/wp04_nipfp_014.pdf

- Above 40% penetration rate, a 10% increase in telecoms investment results in an average 0.45% increase in GDP
- Note: Bottom-up micro case studies have tended to produce more positive results than top-down macro econometric studies

Case Study from Hong Kong, 1997

- In 1997 = John Ure estimated for PECC the impact of PSTN liberalization in Hong Kong
 - 0.35 GDP elasticity → 0.8% increase in GDP from telecoms domestic investment multiplier over 5 years
 - This estimate is on the low side of the findings of R&W

		Teledensity	Impact of 10% investment
ſ	Hong Kong, 1997	33%	1.15% increase in GDP

Source: John Ure (1977) 'The Economic Benefits of Telecons Liberalization in Hong Kong' http://www.trp.trpc.com.hk/papers/1997/PECC2.DOC

- Note: teledensity = mainlines/population. Hong Kong had around 2 million families in 1997 ~ 3 per family = every family had a phone
- Note: Hong Kong had rising 2 million mobile phones by 1998!

Mobile Network Investment

· Academic research:

 Several econometric models used to estimate economic impact of investment in mobile networks – for example:

	Teledensity	Impact of 10% investment
Torero et al.	5-15%	0.3% increase in GDP
Waverman et al.	10%	5.9% increase in GDP
Sridhar, Sridhar	< 20%	7% increase in GDP

See Torero, Shyamal and Arjun (2002); Telecommunications Infrastructure and Economic Growth: A Cross-Country Anaysis; Information and Communication, Technology for Development and Poverty Reduction.
Baltimore: Johns Hopkins University Press, pp. 21–63; Waverman, Meschi and Fuss (2005) 'The Impact of Telecoms on Economic Growth in Developing Countries' Paper, University of Michigan (also in Africa: The Impact of Mobile Phones – Vodafone, 2005); Sridhar and Sridhar (2004) 'Telecommunications Infrastructure and Economic Growth: Evidence from Developing Countries',

Benefits from mobile to less developed countries more in evidence

Mobile Network Investment

Sponsored research:

India: The Impact of Mobile Phones (Kathuria, Uppal and Mamta)
 Vodafone 'Public Policy Series' Jan 2009

India	Teledensity	Impact of 10% investment
All	10%	1.2% increase in GDP
Low	<25%	1.3% increase in GDP
High	>25%	1% increase in GDP

Fixed Broadband Network Investment

 Estimates by ITIF (2009) and Brookings Institute (2007) of employment elasticity for broadband in USA

Stimulus Investment	Jobs created/saved
Broadband network \$10 billion	498,000 in 1 year
Health IT \$10 billion	212,000 in 1 year
Smart grid \$50 billion	239,000 in 5 years
USA – 1% increase in penetration (Brookings)	293,200 in 1 year

See 'The Digital Road to Recovery: A Stimulus Plan to Create Jobs, Boost Productivity and Revitalize America' (Atkinson, Castro and Ezell) pub. by the Information Technology & Innovation Foundation http://www.itif.org/index.php?id=212; Issues in Economic Policy, v6 (July 2007) Brookings Institute

- Structural and/or accounting separations
 - UK: functional separation of BT's Openreach
 - New Zealand: operational/accounting separation of Telecom Corp
 - Singapore: structural separation of NetCo (infrastructure) and OpCo (wholesale)

Fixed Broadband Network Investment ■ High-income countries 1.38 ■ Low- and middle-income countries 1.21 1.12 0.81 0.77 0.6 0.43 Fixed telephony Mobile telephony Broadband Figure 1: Growth impact of telecommunications (GDP percentage point increase due to 10 percentage-point increase in penetration) Yongsoo Kim, Tim Kelly, and Siddhartha Raja (Jan 2010) Building broadband: Strategies and policies for the developing world' Global Information and Communication Technologies (GICT) Department, World Bank

 Investment Alternative sources of finance = reduces the opportunity cost of competing state expenditures (telecoms vs. health, roads, etc) Well-designed regulation * can spread the effects nationwide, e.g's			Review
productivity starts to 'show up in the figures' (network effects kick in after a threshold has been reached)	* Poor or uncertain regulation barrier to (i)Investru scale (ii)Investru	n n is a n ent	opportunity cost of competing state expenditures (telecoms vs. health, roads, etc) 2. Well-designed regulation * can spread the effects nationwide, e.g's • Interconnection sharing can benefit rural areas • Low-cost or no-cost spectrum for rural community use • Licences can include USO or similar obligations, etc. 3. Multiplier effects ~ 0.8% (1997 PECC/HK) 4. Static effects = lower transactions costs → downstream efficiencies 5. Dynamic effects = competition drives innovation = lowers costs + new sectors of growth 6. Network effects = when society is networked, productivity starts to 'show up in the figures' (network effects kick in after a threshold has been

	Review
Employment	'Off-the-books' employment very common
	1. Initially employment may fall
	2. New entrants create new jobs
	3. Skill set requirements change dramatically
	4. Employment created in ancillary sectors (network equipment and components; telecom services; etc)
	5. Indirect employment in all sectors using telecoms as a mode of output, e.g. calling centres, BPO, etc
TRPC	

	Review
<u>Trade</u>	WTO's 4 modes of delivery
	 Mode 1 (international trade) is very strong as communications is the basis of all trade Mode 2 (consumption aboard) is often resisted, e.g. by-pass via Skype, calling cards, callback, etc. Mode 3 (foreign commercial presence) is the most controversial, e.g. often FDI caps = a NTBT Mode 4 (movement of natural persons) not so important, e.g. most overseas employees are local or on work permits

Reform and the state of telecoms

Carriers

SOE → corporatization → privatization → competition

- Competition --→ 'independent' regulation → regulation of asymmetric market powers
 - Interconnection, unbundling, 'must carry', etc.
 - SMP and dominance regulation, accounting and structural separations, etc.
 - Scarce resources regulation (numbers, spectrum, rights of way)
 - Laws and licensing (new, unified, class, special, unlicensed, liberal use, etc)
 - Other including cross-ownership, data protection, privacy, etc.

Network Equipment Vendors

- National champions

 competitive bidding
- Trade and investment (and GATTS/ WTO) on a global scale
 - Examples in Asia Pacific: Alcatel in Shanghai; Fujitsu in Sydney; Huawei in India in Bangalore
- Internetworking → entry of IT companies into the telecom space = IP-based server, S/W and networking companies, e.g. Cisco, HP, IBM, SAP, Oracle, etc...

CPE or Access Devices

- Customer premises equipment = last part of the industry to transform → OS-based access devices
 - Smartphones, PDAs, games consoles, e-Books, Networks, iPad and tablet computers, etc
 - Bringing Web 2.0 into the telecoms domain, e.g. social networking, etc. = driving the uptake of "data" (vs. voice)
 - Creates chain of ancillary demand for flash memory, LCD displays, assembly, touch-screen technology, etc... most of them in Asia
 - Entry of IT companies into telecoms domain, from OEMs and ODMs (e.g. HTC graduated to Smartphones), to companies like Dell
- Standards issues
 - Telecom world = interoperable standards
 - IT world = proprietary standards

Web world = open standards

-IPR issues

The Impact on Telecoms

- Network Evolution:
 - Digital → Internet → Broadband → High Speed Broadband Networks (HSBN) → All-IP 'Next Generation' HSBN (NGHSBN)
- Services Evolution:
 - Voice → Low speed data → medium speed data → high speed data
- Prices:
 - levels reduced (s'times to zero) = revenue model issues!!
 - Structural changes (bundling, cross-selling, flat-rate, bit-rate, payper-use, etc.) = business model issues!!
- Network by-pass:
 - · Competition, e.g. international calling cards
 - Substitution, e.g. fixed-mobile substitution (FMS)
 - Internet, e.g. Skype, IM, social networking, emails, etc

johnure@trpc.biz

