

2014/SCSC/WKSP2/002

Session: 4

The Proficiency Testing of Determination of Veterinary Drug Multi-Residues in Chicken

Submitted by: China

Food Safety Cooperation Forum Partnership
Training Institute Network Proficiency Testing
Workshop
Beijing, China
10-11 September 2014

The Proficiency Testing of Determination of Veterinary Drug Multi-Residues in Chicken M CTI 03/12A

September 2014, Beijing China
Chinese Academy of Inspection and Quarantine (CAIQ)

Overview

- ◆ This sub-project is under the Multi Year Project, entitled Building Convergence in Food Safety Standards and Regulatory Systems (CTI 03 12A) funded by APEC Technical Assistance and Training Facility (TATF)
- ◆ APEC funding:124,000 ;China co-**funding 137,928** USD.
- ◆ This project responds to the newly revised and agreed Food Safety Capacity Building Priority Areas 2011-2015 of APEC Food Safety Cooperation Forum (FSCF).

Overview

◆This project is carried out by Chinese Academy of Inspection and Quarantine (under AQSIQ) with great assistance from APLAC, ASEAN, FSANZ, NMIA, US FDA, and USDA, etc.

Objective

◆This project is an inter-laboratory proficiency testing (PT) program, to determine veterinary drug multi-residues in animal origin products, which is important to develop laboratory capabilities within APEC economies, to improve the acceptability of test results so as to facilitate animal origin products trade among APEC economies.

Timetable

Timelines	Activities	Key Deliverables
	1.1 Expert Working Group Establishment	List of Member
Dec. 2012 – July 2013	1.2 Develop and confirm PT scheme	Confirmed PT scheme
	1.3 Laboratories Recruitment	List of Participant Laboratories
May- Oct. 2013	2.1 Testing Items Preparation	Prepared Items; Homogeneity and Stability of Items; Assigned Value and Acceptable Range
Nov. 2013 Feb. 2014	2.2 Testing Items Distribution and Analysis	Testing Result

Timetable

Timelines	Activities	Key Deliverables
Dec. 2013 March 2014	2.3 Results collection and Data Analysis	Data form
April – August 2014	3.1 Data Analysis	Develop Interium Report and draft final report
September 10-11, 2014	3.2 Workshop in China	PT Report; Improvement Proposal
SepOct. 2014	3.3 Evaluation and Completion	final Report

Progress

PT scheme development

Invitation and nomination/Sample preparation

Samples deliver and analysis

Data collection and analysis

PT workshop

PT Scheme Development

- Following requirement of ISO/IEC 17043
- > Testing items choosing
- Agreement of Testing Methods
- Sample preparation method confirmation
- >Statistical Assessments method selecting
- > Potential participants defining
- ➤ Budget development

Invitation and Nomination

Dear FSCF members,...

Veterinary Drug Multi-residues in Chicken Proficiency Testing Program (Briefing as PT Program) is one of laboratory capacity building events under the MYP Building Convergence in Food Safety Standards and Regulatory Systems (M CTI 02 12A) hosted by FSCF and led by China. The PT Program is developed and now circulated for your comments...

Please respond by March 30 with any comments to this approach...

Veterinary Drug Multi-residues in Chicken Proficiency Testing Program.

Objective.

The objective of this proficiency testing program is to evaluate the competence of laboratories for quantitative testing of veterinary drug multi-residues including 3-amino-2-oxazolidone (AOZ), 5-morpholinomethyl-3-amino-2-oxazolidone (AMOZ), sulfamethoxazole, sulfadimidine, sulfaquinoxaline, ciprofloxacin in chicken samples...

Organization

The program will be coordinated by Chinese Academy of Inspection and Quarantine, AQSIQ, China...

Coordinator.

Dr. LIU Hanxia 8610 85781069, liuhanxia cn@163.com.

Participants.

Food testing laboratories of APEC economies are encouraged to participate the PT program. Each economy is suggested to nominate not more than 2 participants...

Samples.

Two vacuum freeze dried chicken samples will be supplied to each participant...

Homogeneity and Stability Evaluation.

Ten and twelve samples will be tested for homogeneity and stability evaluation respectively. The samples were prepared and tested by Chinese Academy of Inspection and Quarantine Comprehensive Test Center (CAIQTEST). CAIQTEST is accredited according to ISO/IEC 17025 and ISO 17043...

Tests...

The participating laboratories may choose one or more of the following analysts: AOZ, items of AOZ, AMOZ, sulfamethoxazole, sulfadinidine, sulfaquinoxaline, and ciprofloxacin in the samples to take part in this proficiency testing program...

Methodology.

For testing each item, routine methods should be preferably used, such as LCMS or LCMSo, method. Other methods could also be used, however, the limit of quantitation of AOZ and AMOZ should be higher than 0.5

Invitation Letter to APEC PT on Veterinary Drug Residue.

22 May 2013. APLAC PT Committee Chair. Koichi NARA.

Dear PT Committee members and APLAC PT Contacts...

APEC FSCF will be running a PT of "Veterinary Drug Multi-residues in Chicken". You are invited to nominate up to 2 laboratories without participation fee. The information is given as the following.

Objective.

The objective of this proficiency testing program is to evaluate the competence of laboratories for quantitative testing of veterinary drug multi-residues including 3-amino-2-oxazolidone (AOZ), 5-morpholinomethyl-3-amino-2-oxazolidone (AMOZ), sulfamethoxazole, sulfadimidine, sulfaquinoxaline, ciprofloxacin in chicken samples...

Coordinating Organization.

The program will be coordinated by Chinese Academy of Inspection and Quarantine, AQSIQ, China...

Coordinator.

Dr. LIU Hanxia 8610 85781069, liuhanxia_cn@163.com. -

Test materials and analytes.

Two vacuum freeze dried chicken samples will be supplied to each participant. Each sample will be packaged in vial. The participating laboratories may choose one or more of the following analysts: AOZ, AMOZ, sultamethoxazole, sulfadimidine, sulfaquinoxaline and ciprofloxacin in the samples to take part in this proficiency testing program...

Methodology...

For testing each item, routine methods should be preferably used, such as LC/MS or LC/MSn method. Other methods could also be used, however, the limit of guantitation of AOZ and AMOZ.

1/2.

Invitation and Nomination

◆30 labs from 13 economies have participated in the PT

Program.

Economy	Number of Labs
Australia	1
Canada	4
Chile	2
Hong Kong, China	2
Indonesia	1
Malaysia	2
New Zealand	1
Peru	1
People's Republic of China	2
Singapore	2
Chinese Taipei	5
Thailand	5
The United States	1

-----Homogeneity (ISO 13528)

Table C.1-1 Homogeneity Testing Results of AOZ in Sample B

The number of samples: 10 Each sample test duplicated. unit: ug/kg Test items: AOZ Test method: GB/T 21311-2007

Number	Result 1	Result 2	Average result	Within groups bias 1	Within groups bias 2	Between groups bias	Within groups range
j	x _{1 i}	x _{2 j}	\overline{x}_j	$(x_{1j} - x_{j})^{2}$	$(x_{2j} - \overline{x}_{j})^{2}$	$n_{j}(\overline{x}_{j}-\overline{x})^{2}$	(x,, - x,,)
1	4.51	3.99	4.250	0.0676	0.0676	0.4238	0.2704
2	3.53	4.28	3.907	0.1391	0.1391	0.0275	0.5565
3	3.80	3.69	3.745	0.0030	0.0030	0.0041	0.0119
4	4.28	3.75	4.015	0.0702	0.0702	0.1015	0.2809
5	2.54	3.16	2.850	0.0961	0.0961	1.7660	0.3844
6	4.78	4.08	4.430	0.1225	0.1225	0.8200	0.4900
7	3.87	3.31	3.590	0.0784	0.0784	0.0797	0.3136
8	3.00	3.97	3.485	0.2352	0.2352	0.1857	0.9409
9	4.18	4.46	4.320	0.0196	0.0196	0.5625	0.0784
10	3.75	2.86	3.305	0.1982	0.1982	0.4693	0.7930
			$\overline{\overline{x}}$	SUM1	SUM2	SUMs	SUMw
		\mathbf{x}_i	3.790	1.029997	1.029997	4.440182	4.119987

	One-Way ANOVA									
	SS	f	МS	F	F critical value	Confidence probability	STD			
Between groups	4.4402	9	0.4934	2.39	3.02	0.95	0.379			
Within groups	2.0600	10	0.2060							

-----Homogeneity (ISO 13528)

Table C. 2-5 Homogeneity Testing Results of Sulfaquinomaline in Sample A

Number of samples:10 Each sample was tested duplicated, unit: ug/kg Test items: Sulfaquinoxaline Test method: GE/I 21311-2007

Number	Result 1	Becul+ 2	Average result	Within groups	Within groups bias	Between groups	Within groups
Number			Average resurt	bias 1	2	bias	range
j	x _{1,j}	x _{2j}	Σ _j	(x(x, 7.47x))*	$(x_{ij} - \overline{x}_j)^2$	$\pi_j(x_j - x)^2$	(x,, - x,,)
1	968	1061	1014.500	2162.2500	2162.2500	3698, 0000	8649.0000
2	892	1040	966.000	5476.0000	5476.0000	60. 5000	21904.0000
3	984	957	970.500	182, 2500	182, 2500	2, 0000	729.0000
4	903	998	950.500	2255, 2500	2256.2500	882, 0000	9025.0000
5	1040	1020	1030.000	100.0000	100.0000	6844. 5000	400.000
6	874	930	902.000	784.0000	784.0000	9660, 5000	3136.0000
7	959	989	974.000	225.0000	225.0000	12, 5000	900.000
8	1024	990	1007.000	289.0000	289.0000	2520, 5000	1156.000
9	1021	971	996,000	625,0000	625,0000	1200, 5000	2500.000
10	958	851	904.500	2962, 2500	2952, 2500	8978, 0000	11449.000
			- -	SUM1	SUM2	SUMs	SUMw
		x,	971.500	14962,0000	14962,0000	33859, 0000	59848,000

	One-Way ANDVA								
	SS	£	MS	F	F critical value	Confidence probability	STD		
Between groups	33859.00	9	3762. 1111	1. 26	3.02	0.95	19.618		
Within groups	29924.00	10	2992, 4000						

Conclusion: The homogeneity of Sulfaquinomaline in Sample A is acceptable at a 95% Confidence Interval level.

Test:Zhao Xin Date: 2015.10.25	Statistical analysis: Lu Ringan Date: 2015.10.24	Check: Wang Miujun Date: 2015.10.25
--------------------------------	--	-------------------------------------

Sample Preparation -----Stability (ISO 13528)

The stability check of ciprofloxacin in sample A

item: ci	proflox	acin	σ	17.2	Sample	A		$\bar{\bar{x}}$	1.95	LOG (µg/kg)
DATE	TEMP.	t (day)	x _{1i}	x _{2i}	x _{1i}	x _{2i}	\overline{x}_i	$\overline{\overline{x}}_i$	$\delta = \left \overline{\overline{x}}_i - \overline{\overline{x}} \right $	8/s*
2013-10-23	25	1	90.5	79.0	1.957	1.898	1.927	1.925	0.025	0.001
			91.9	89.0	1.963	1.949	1.956			
			72.6	83.6	1.861	1.922	1.892			
2013-11-1	25	10	86.2	92.1	1.936	1.964	1.950	1.939	0.011	0.001
			85.2	79.6	1.930	1.901	1.916			
			92.3	86.5	1.965	1.937	1.951			
2013-11-10	25	20	78.3	82.6	1.894	1.917	1.905	1.932	0.018	0.001
			92.1	89.1	1.964	1.950	1.957			
			89.2	82.4	1.950	1.916	1.933			
2013-11-19	25	30	81.2	89.1	1.910	1.950	1.930	1.927	0.023	0.001
			92.1	79.8	1.964	1.902	1.933			
			83.6	82.4	1.922	1.916	1.919			

Test: Zhao Xin Statistical analysis: Lu Xingan Check: Wang Xiujun

Date 11/11/13 Date 11/11/13 Date 12/11/13

Samples Delivery and Analysis

Instructions for Participating Laboratories

Dear <lab name>:

Welcome to participate in Veterinary Drug Multi-residues in Chicken Proficiency Testing Program (Briefing as PTProgram) is one of the laboratory capacity building event among APEC's MYP Building Convergence in Food Safety Standards and Regulatory Systems (MCTI 02 12A) under APEC FSCF and lead by China. The confidentiality is ensured to use the lab code throughout the program. Your lab code is APEC FSCF-MYP-XXX.

To ensure that results from this program can be analyzed properly, participants are asked to adhese carefully to the following instructions.

1. Sample

Two freeze dried chicken samples with weight about 16 gram and different veterinary drug levels sealed in foil bags respectively are sent to each participant.

When receiving the artifacts, please check the packaging and the artifact in the receiving day, and send the "Sample Receipt Form" electronically to the coordinator of the PT program <u>limbancia cn@163.com</u> co <u>lova@sina.com</u>.

2. Testing Period and Storage Instruction

Testing may commence as soon as samples are received.

Store your samples in the original packaging in room temperature between 15°C and 25°C.

3. Analytes

The analytes among the following items will be tested according to your nomination in this PT program.

- a) 3-amino-2-oxazolidone (AOZ)
- b) 5-morpholinomethyl-3-amino-2-oxazolidone (AMOZ)
- c) Sulfamethoxazole
- d) Sulfadimidine
- e) Sulfaquinoxaline
- f) ciprofloxacin

4. Testing Procedure

The freeze dried sample should be recovered by adding three times weight of distilled water and stirring

		Sample Receipt Form	
Institute/ Laboratory: Assigned lab code:			
Postal address:			
Contact person:			
	Title	Given name	Surname
Tel/Fax:			
E-mail:			
Print name / Signature:			
Date:			
Confirmation of	Package Conten	its	
Chicken Proficien	cy Testing Progra		e Veterinary Drug Multi-residues in vergence in Food Safety Standards
•	of freeze dried chi	icken powder with bags numbe	r
☐ The sample is for analysis (*Ple		Broken/Missing* and should opriate).	be Suitable / Not Suitable*
□ DECLARATIO	ON TO CUSTOM	IS OFFICIALS AND SHIPPIN	NG AGENTS
Other comments:			

Data Collection

◆26 results reports have been received by deadline.

			Re	sults Rep	ort Form	J		
	Institute/ Laboratory:	a		.1				
	Assigned lab	a						
	Postal address:	a a						
	Contact person:	a	а.	1		1 .1		
	a	Tit	le.1 .1	Given :	name.1 .	Sur	name.	
	Tel/Fax:	a						
	E-mail:	a						
	Print name / Signature:	а						
	Date:.1	a						
+	1. Analytical	results	L					
	Analytes -		Sample No		results in te (μg/kg) 2	Mean value (μg/kg)	Recovery (%).	.1
ı	3-amino-2-		13-C	a a	a	а	а	.1
	oxazolidone (A	OZ).1	13-D	a a	a			a
	5-morpholinom	ethyl-	13-C	a a	a	.1	a	a
	3-amino-2- oxazolidone (AMOZ)		13-D	a a	л			a
			13-C	a a	a	а	а	a
	sulfamethoxazo	de-	13-D	a a	a			a

2. Methods of analysis		
Analyte: 3-amino-2-oxazoli	done (AOZ)	
1. * Derivatization:	YES / NO.	a
a	If yes, please specify the derivatization reagent and the derivatization duration:	a
2. Extraction:	Solvent(s):.	л
a	Technique:	
	Duration:	
	<u>a</u>	
3. Cleaning up procedure:	a a	a
a		.1
4. Source(s) of calibration standard(s):	a	.1
5. *Use of internal	a	а
standard(s):	YES (please specify): / NO.,	.1
6 *Analytical instrument(s):	LC-MS/LC-MSMS/LC	a a
.1	Others (please specify):	a
4	a contract of the contract of	.a
7. *Column:	Normal phase / Reversed phase LC column / LC MS column	a
	Please specify the description, ID (mm), length (mm) and particle size (μm):.	
a		
8. *Correction for recovery:	YES (please specify recovery (%)): / NO.,	
9. *Method accreditation:	YES / NO.	a
a	a	a
10. Additional information:		1
* Please delete as annonciate		

- The participants' performance were assessed using z-scores calculated by robust statistical method. Median and normalized interquartile range (NIQR) intended to be used as the statistics for z-score calculation.
- The z-scores were calculated by the following formulae. Z-Score = (Result-Median) / NIQR
- As a general rule, any z-score outside the range of -2 to 2 indicates a questionable result/pair of results, while an outlier is any result/pair of results with a z-score outside the range of -3 to 3.

Table 1 Reported Results of Residue of AOZ

Sample A						Sample B					
lab code	Testing results in duplicate (µg/kg)		Mean value (μg/kg)	Recovery (%)	Z-Score	Testing results in duplicate (μg/kg)		Mean value (με/kg)	Recovery (%)	Z-score	Method or instrument
	1	2		` '		1	2				
APEC FSCF-MYP-001	20.5	20.0	20.3	98.3	6.20	9.51	9.33	9.42	98.3	5.42	LC-MSMS
APEC FSCF-MYP-002	9.000	10.000	9.500	/	1.61	5.000	6.000	5.500	/	1.74	LC-MSMS
APEC FSCF-MYP-006	7.03	7.02	7.03	100.0	0.56	3.86	3.86	3.86	100.0	0.20	LC-MSMS
APEC FSCF-MYP-007	3.68	3.43	3.56	97.2	-0.92	2.18	2.17	2.18	97.2	-1.37	LC-MSMS
APEC FSCF-MYP-009	5.588	5.755	5.652	80.2	-0.03	3.207	3.229	3.218	90.0	-0.40	LC-MSMS
APEC FSCF-MYP-010	3.19	3.63	3.41	104.82	-0.98	2.02	2.40	2.21	104.82	-1.34	LC-MSMS
APEC FSCF-MYP-013	2.63	2.59	2.61	1	-1.32	1.71	1.81	1.76	/	-1.77	LC-MSMS
APEC FSCF-MYP-016	3.20	2.80	3.00	108	-1.16	1.80	1.70	1.75	126	-1.78	LC-MSMS
APEC FSCF-MYP-017	6.9	5.5	6.2	/	0.20	2.8	2.3	2.6	/	-0.98	LC-MSMS
APEC FSCF-MYP-018	7.70	7.80	7.80	112	0.88		4.70	4.70	112	0.99	LC-MSMS
APEC FSCF-MYP-019	2.04	2.01	2.03	40.4	-1.57	3.24	2.37	2.81	40.4	-0.78	LC-MSMS
APEC FSCF-MYP-021	3.96	3.77	3.87	74.4	-0.79	5.46	5.55	5.5	74.4	1.74	LC-MSMS
APEC FSCF-MYP-022	5.588	5.600	5.594	<90-110>	-0.05	3.544	3.524	3.534	<90-110>	-0.10	LC-MSMS
AFECTSCI-MIT-022	5.79	5.792	5.791	<90-110>	0.03	3.605	3.992	3.799	<90-110>	0.15	LC-MSMS
APEC FSCF-MYP-025	6.59	6.57	6.58	99	0.37	3.76	3.92	3.84	99	0.19	LC-MSMS
APEC FSCF-MYP-026	5.4	5.2	5.3	88	-0.18	3.1	3.0	3.0	88	-0.60	LC-MSMS
APEC FSCF-MYP-027	7.52	7.29	7.40	107	0.71	4.21	4.14	4.18	107	0.50	LC-MSMS
APEC FSCF-MYP-028	0.80	0.74	0.77	7.8	-2.11	0.51	0.47	0.49	8.2	-2.96	LC-MSMS
APEC FSCF-MYP-029	6.013	5.999	6.006	91.1	0.12	3.799	3.702	3.7505	91.1	0.10	LC-MSMS
APEC FSCF-MYP-030	5.87	5.88	5.88	97.6	0.07	3.70	3.79	3.75	97.6	0.10	LC-MSMS

Table 2 Reported Results of Residue of AMOZ

			Sample A			Sample B					
lab code	Testing results in duplicate (µg/kg)		Mean value	Recovery	/_Score	Testing results in duplicate (µg/kg)		Mean value	Recovery	Z-score	Method or instrument
	1	2	(PS ~S)	(1.5)		1	2	(PS 45)	(1.5)		
APEC FSCF-MYP-002	1.900	2.100	2.000	/	1.02	0.900	1.100	1.000	/	0.98	LC-MSMS
APEC FSCF-MYP-006	2.00	2.00	2.00	101.0	1.02	1.00	1.00	1.00	101.0	0.98	LC-MSMS
APEC FSCF-MYP-007	1.13	1.04	1.08	88.0	-0.83	0.46	0.51	0.485	88.0	-0.94	LC-MSMS
APEC FSCF-MYP-009	1.745		1.745	85.60	0.51	0.885	0.852	0.868	87.80	0.49	LC-MSMS
APEC FSCF-MYP-010	1.26	1.18	1.22	108.58	-0.55	0.53	0.73	0.63	108.58	-0.40	LC-MSMS
APEC FSCF-MYP-013	0.750	0.860	0.805	/	-1.38	0.385	0.409	0.397	1	-1.27	LC-MSMS
APEC FSCF-MYP-016	0.5	0.6	0.55	108	-1.90	<0.5	<0.5	<0.5	126	1	LC-MSMS
APEC FSCF-MYP-017	2.0	1.6	1.8	/	0.62	0.59	0.51	0.55	/	-0.70	LC-MSMS
APEC FSCF-MYP-018	2.10	2.00	2.10	99	1.22		0.99	0.99	99	0.94	LC-MSMS
APEC FSCF-MYP-019	1.02	0.895	0.956	45	-1.08	0.78	0.676	0.729	45	-0.03	LC-MSMS
APEC FSCF-MYP-021	<l< td=""><td><l< td=""><td><l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<></td></l<></td></l<>	<l< td=""><td><l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<></td></l<>	<l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<>	108.000	1	1.48	1.58	1.52	108	2.92	LC-MSMS
APEC FSCF-MYP-022	1.484	1.539	1.512	<90-110>	0.04	1.018	0.997	1.008	<90-110>	1.01	LC-MSMS
AFECTSCF-WITF-022	1.508	1.486	1.497	<90-110>	0.01	1.017	1.078	1.048	<90-110>	1.16	LC-MSMS
APEC FSCF-MYP-025	1.50	1.48	1.49	80	-0.01	0.67	0.66	0.67	80	-0.25	LC-MSMS
APEC FSCF-MYP-026	1.8	2.0	1.9	100	0.82	0.7	0.8	0.8	100	0.23	LC-MSMS
APEC FSCF-MYP-027	1.63	1.64	1.64	104	0.29	0.637	0.669	0.653	104	-0.31	LC-MSMS
APEC FSCF-MYP-028	0.19	0.17	0.18	11.1	-2.64	0.14	0.14	0.14	0	-2.23	LC-MSMS
APEC FSCF-MYP-029	1.501	1.470	1.485	100.0	-0.02	0.743	0.748	0.7455	100.0	0.03	LC-MSMS
APEC FSCF-MYP-030	1.36	1.34	1.35	96.8	-0.29	0.68	0.74	0.71	96.8	-0.10	LC-MSMS

B.5 Ordered z-scores Bar Chart of Results of Sulfamethoxazole in Sample A

Interim Report

APEC MYP (M CTI 02 12A) Veterinary Drug Multi-residues in Chicken Proficiency Testing Program INTERIM REPORT

Date of Issue: June 29, 2014

In this APEC proficiency testing program, veterinary drug multi-residues including 3-amino-2-examplidenc (AOZ), 5-morpholinomethyl-3-amino-2-examplidenc (AMOZ), sulfamethoxample, sulfadimidine, sulfaquinoxaline, and eigenfloxacin in chicken muscle samples were tested.

Two gross samples A and B were prepared and divided respectively to testing samples A and B, then every two testing samples A and B were distributed to the participating laboratories.

The results for the tests on AOZ, AMOZ, sulfamethoxazole, sulfadimidine, sulfaquinoxaline, and eigenfloxacin residues reported from the participating laboratories are listed in Table 1.

The statistics given in Table were calculated by robust statistical methods based on the results listed submitted by participants. The s-scores can be calculated by the following formulae. Z-Score = (Result-Median) / NIQR

As a general rule, any z-score outside the range of -2 to 2 indicates a questionable result/pair of results, while an outlier is any result/pair of results with a z-score outside the range of -3 to 3.

Please confirm this interim report NO LATER THAN JULY 15, 2014 with your lab's address, Lab Code No. in this program, email, phone and fax number, we will use them for sending the final report. Thanks for your cooperation.

If you have any question on any supect of your test, or on this PT program, please feel free to contact the persons listed below.

Coordinators:

刘双贺

ACAS CAIQ, Chine www.eces.com.cn E-mel: ACAS PT@128.com Table 1 Reported Results of Residue of AOZ

			Sample A			Sample B					
lab code	Testing results in duplicate (µg/kg)					Z-Score duplicate		Mean value Recov	Recovery (%)	Z-score	Method or instrument
	1	2	(15-5)	()		1	2	(-5-5)			
APEC FSCF-MYP-001	20.5	20.0	20.3	98.3	6.20	9.51	9.33	9.42	98.3	5.42	LC-MSMS
APEC FSCF-MYP-002	9.000	10.000	9.500	/	1.61	5.000	6.000	5.500	/	1.74	LC-MSMS
APEC FSCF-MYP-006	7.03	7.02	7.03	100.0	0.56	3.86	3.86	3.86	100.0	0.20	LC-MSMS
APEC FSCF-MYP-007	3.68	3.43	3.56	97.2	-0.92	2.18	2.17	2.18	97.2	-1.37	LC-MSMS
APEC FSCF-MYP-009	5.588	5.755	5.652	80.2	-0.03	3.207	3.229	3.218	90.0	-0.40	LC-MSMS
A							~				

Table 2 Reported Results of Residue of AMOZ

	Sample A						Sample B					
lab code	Testing results in duplicate (μg/kg)	e (μg/kg)	Mean value (μg/kg)	Recovery (%)	Z-Score	Testing results in duplicate (μg/kg)		Mean value (μg/kg)	Recovery	Z-score	Method or instrument	
	1	2				1	2					
APEC FSCF-MYP-002	1.900	2.100	2.000	/	1.02	0.900	1.100	1.000	/	0.98	LC-MSMS	
APEC FSCF-MYP-006	2.00	2.00	2.00	101.0	1.02	1.00	1.00	1.00	101.0	0.98	LC-MSMS	
APEC FSCF-MYP-007	1.13	1.04	1.08	88.0	-0.83	0.46	0.51	0.485	88.0	-0.94	LC-MSMS	
APEC FSCF-MYP-009	1.745		1.745	85.60	0.51	0.885	0.852	0.868	87.80	0.49	LC-MSMS	
APEC FSCF-MYP-010	1.26	1.18	1.22	108.58	-0.55	0.53	0.73	0.63	108.58	-0.40	LC-MSMS	
APEC FSCF-MYP-013	0.750	0.860	0.805	/	-1.38	0.385	0.409	0.397	/	-1.27	LC-MSMS	
APEC FSCF-MYP-016	0.5	0.6	0.55	108	-1.90	<0.5	<0.5	<0.5	126	- 1	LC-MSMS	
APEC FSCF-MYP-017	2.0	1.6	1.8	1	0.62	0.59	0.51	0.55	1	-0.70	LC-MSMS	
APEC FSCF-MYP-018	2.10	2.00	2.10	99	1.22		0.99	0.99	99	0.94	LC-MSMS	
APEC FSCF-MYP-019	1.02	0.895	0.956	45	-1.08	0.78	0.676	0.729	45	-0.03	LC-MSMS	
APEC FSCF-MYP-021	<l< td=""><td><l< td=""><td><l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<></td></l<></td></l<>	<l< td=""><td><l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<></td></l<>	<l< td=""><td>108.000</td><td>1</td><td>1.48</td><td>1.58</td><td>1.52</td><td>108</td><td>2.92</td><td>LC-MSMS</td></l<>	108.000	1	1.48	1.58	1.52	108	2.92	LC-MSMS	
APEC FSCF-MYP-022	1.484	1.539	1.512	<90-110>	0.04	1.018	0.997	1.008	<90-110>	1.01	LC-MSMS	
AFECTSCI-MIT-022	1.508	1.486	1.497	<90-110>	0.01	1.017	1.078	1.048	<90-110>	1.16	LC-MSMS	
APEC FSCF-MYP-025	1.50	1.48	1.49	80	-0.01	0.67	0.66	0.67	80	-0.25	LC-MSMS	
APEC FSCF-MYP-026	1.8	2.0	1.9	100	0.82	0.7	0.8	0.8	100	0.23	LC-MSMS	
APEC FSCF-MYP-027	1.63	1.64	1.64	104	0.29	0.637	0.669	0.653	104	-0.31	LC-MSMS	
APEC FSCF-MYP-028	0.19	0.17	0.18	11.1	-2.64	0.14	0.14	0.14	0	-2.23	LC-MSMS	
APEC FSCF-MYP-029	1.501	1.470	1.485	100.0	-0.02	0.743	0.748	0.7455	100.0	0.03	LC-MSMS	
APEC FSCF-MYP-030	1.36	1.34	1.35	96.8	-0.29	0.68	0.74	0.71	96.8	-0.10	LC-MSMS	

Item	Sample		Total Results	Satisfactory		Unsatisfactory
recin	bumpic		Total Results	results	results	results
	Sample A	Number	20	18	1	1
AOZ	Sample A	Percent(%)	20	95	5	5
AOL	Sample B	Number	20	18	1	1
	Sample D	Percent(%)	20	95	5	5
	Sample A	Number	10	17	2	О
AMOZ	Sample A	Percent(%)	19	90	10	O
AWOL	Sample B	Number	10	17	2	O
	Sample D	Percent(%)	19	90	10	O
Sulfamethoxazole	Sample A	Number	19	18	1	O
	Sample 11	Percent(%)	19	95	5	О
	Sample B	Number	10	18	O	1
	Sample D	Percent(%)	19	95	О	5
	Sample A	Number	16	12	3	1
Sulfadimidine	Sample 11	Percent(%)	10	75	19	6
Sunaummume	Sample B	Number	16	13	1	2
	Sample D	Percent(%)	10	82	6	12
	Sample A	Number	10	15	4	0
Sulfaquinoxaline	Sample A	Percent(%)	19	79	21	О
Sunaquinoxamie	Sample B	Number	10	16	2	1
	Sample D	Percent(%)	19	84	11	5
	Sample A	Number	22	20	2	1
Ciprofloxacin	Sample A	Percent(%)	23	87	9	4
Cipiorioxaciii	Sample B	Number	22	16	3	4
	Sample D	Percent(%)	23	70	13	17

Data Analysis Summary

Item	Sample	MEDIAN (mg/kg)	NIQR (mg/kg)	CV(%)
AOZ	A	5.72	2.35	41
AUZ	В	3.64	1.07	29
AMOZ	A	1.49	0.498	33
AWOZ	В	0.737	0.268	36
sulfamethoxazole	A	28	5.78	21
Sullalliethoxazole	В	143	28.0	20
sulfadimidine	A	36.2	7.19	20
Sundummume	В	123	27.9	23
culfaquinovalino	A	989	326	33
sulfaquinoxaline	В	216	57.4	27
ciprofloyacip	A	82.4	20.1	24
ciprofloxacin	В	430	53.8	13

Clarification and Conclusion

Item	Sample	MEDIAN' (mg/kg)	NIQR' (mg/kg)	CV'(%)	CV(%)
AOZ	A	6.15	1.76	29	41
AUL	В	3.86	1.26	33	29
AMO 7	A	1.79	0.468	26	33
AMOZ	В	0.99	0.261	26	36
1C11	A	30.6	5.60	18	21
sulfamethoxazole	В	147	16.7	6	20
aulfadimidina	A	34.8	4.67	13	20
sulfadimidine	В	128	16.7	13	23
gulfa guin avalina	A	1024	278	27	33
sulfaquinoxaline	В	245	38.3	16	27
ciprofloyacia	A	95.2	17.2	18	24
ciprofloxacin	В	484	48.6	10	13

Technical Commentary

- Extracting method employed;
- Cleaning-up method employed;
- >Recovery;
- ➤ Using internal standards;
- Following the INSTRUCTION for PARTICIPATING LABORATORY.

Thank you!

Dr. Liu Hanxia
Liuhanxia_cn@163.com