

2015/SOM3/CD/WKSP/007

Approaches to Exposure Assessment for Metals

Submitted by: McLaughlin Centre for Population Health Risk Assessment

Workshop on Metals Risk Assessment Cebu, Philippines 28-29 August 2015

Outline
1. New directions in risk science
2. Exposomics
 Biomarkers of exposure Biomonitoring equivalents High throughput techniques
3. Metals-specific exposure assessment
 Aluminum Manganese Copper
4. Conclusions
McLaughlin Centre for Population Health Risk Assessment

Report on Human		- Arith	metic and					f blood con asures Surv).
Biomonitoring			% <lod•< th=""><th>A.M. 95%CI</th><th>G.M. 95%CI</th><th>10⁴ 95%Cl</th><th>25* 95%CI</th><th>50th 95%Cl</th><th>75th 95%Cl</th><th>90* 95%Cl</th><th>9 95</th></lod•<>	A.M. 95%CI	G.M. 95%CI	10 ⁴ 95%Cl	25* 95%CI	50 th 95%Cl	75 th 95%Cl	90* 95%Cl	9 95
of Environmental	Total, age 6–79	5319	0.02	1.66 1.52 - 1.79 1.02	1.34 1.24 - 1.44 0.90	0.60 0.55 - 0.65 0.53	0.86 0.79 - 0.93 0.65	1.30 1.21 - 1.39 0.87	2.03 1.83 - 2.22 1.19	3.07 2.77 - 3.37 1.61	3 3.30
Chemicals in Canada	6–11 12–19	910 945	0.00	0.91 - 1.13 0.89 0.81 - 0.97	0.81 - 0.99 0.80 0.74 - 0.85	0.49 - 0.57 0.47 0.44 - 0.51	0.59 - 0.70 0.57 0.53 - 0.62	0.77 - 0.97 0.76 0.70 - 0.83	1.05 - 1.34 1.05 0.99 - 1.11	1.47 - 1.76 1.34 1.11 - 1.55	1.65 1.
Results of the Canadian Health	20-39	1165	0.09	1.37 1.27 - 1.45 1.87	1.12 1.04 - 1.21 1.60	0.57 0.52 - 0.62 0.82	0.76 0.69 - 0.82 1.15	1.05 0.99 - 1.11 1.55	1.58 1.39 - 1.77 2.22	2.35 2.02 - 2.58 3.17	3 2.75 3
Measures Survey Cycle 1 (2007–2009)	40-59	1220	0.00	1.67 - 2.07 2.49	1.45 - 1.75 2.08	0.70 - 0.95	1.05 - 1.24	1.43 - 1.67 2.07	1.95 - 2.50 3.02	2.71 - 3.63 4.17	3.16
1	Males Total,			2.22-2.77	1.90 - 2.29	0.93 - 1.14	1.33 - 1.56	1.90 - 2.24	2.68 - 3.37	3.53 - 4.81	4.20
	age 6-79 6-11	2576 459	0.00	1.69 - 2.03 1.04 0.94 - 1.14	1.40 - 1.63 0.92 0.85 - 0.99	0.56 - 0.75 0.54 0.50 - 0.58	0.95 - 1.08 0.86 0.61 - 0.72	1.34 - 1.54 0.89 0.79 - 1.00	2.01 - 2.42 1.21 1.10 - 1.31	2.87 - 3.65 1.64 144 - 1.83	3.71 1 1.78
	12-19	489	0.00	0.99 0.88 - 1.11	0.88 0.82 - 0.96	0.51 0.45 - 0.55	0.65	0.87 0.79 - 0.95	1.16 1.05 - 1.27	1.53 1.29 - 1.77	1
	20-39	514	0.00	1.70 1.56 - 1.85 2.01	1.41 1.28 - 1.55 1.74	0.75 0.65 - 0.85 0.98	0.97 0.87 - 1.07 1.25	1.30 1.15 - 1.46 1.61	2.00 1.68 - 2.33 2.35	2.94 2.59 - 3.30 3.31	3 2.88
	60-79	537	0.00	1.75 - 2.27 2.78 2.46 - 3.10	1.57 - 1.92 2.31 2.08 - 2.57	0.89 - 1.08 1.20 1.07 - 1.34	1.15 - 1.35 1.55 1.37 - 1.73	1.45 - 1.77 2.24 1.98 - 2.49	1.92 - 2.77 3.27 2.86 - 3.68	2.77 - 3.85 4.86 3.96 - 5.75	3.02 6 4.95
	Females										
	Total, age 6–79	2743	0.04	1.45 1.30 - 1.60 0.99	1.18 1.08 - 1.30 0.87	0.55 0.50 - 0.60 0.51	0.74 0.68 - 0.81 0.64	1.14 1.04 - 1.25 0.85	1.74 1.51 - 1.97 1.16	2.73 2.35 - 3.12 1.61	3. 3.03
	6-11 12-19	451 458	0.00	0.85 - 1.13 0.77	0.77 - 0.99 0.71	0.45 - 0.57 0.43	0.57 - 0.70 0.53	0.73 - 0.97 0.68	0.93 - 1.39 0.91	1.37 - 1.86 1.16	1.26
Adding AN AN	20-39	651	0.15	0.72 - 0.83 1.02 0.92 - 1.12	0.66 - 0.77 0.89 0.81 - 0.98	0.37 - 0.49 0.52 0.46 - 0.57	0.48 - 0.58 0.64 0.60 - 0.68	0.62 - 0.75 0.86 0.77 - 0.96	0.79 - 1.04 1.19 1.08 - 1.30	0.98 - 1.33 1.64 1.38 - 1.91	1.25 2 1.78
	40-59	643	0.00	1.72 1.51 - 1.94 2.23	1.47 1.31 - 1.65 1.89	0.71 0.59 - 0.82 0.94	1.05 0.90 - 1.19 1.34	1.46 1.27 - 1.54 1.93	2.11 1.81 - 2.41 2.67	3.11 2.49 - 3.74 3.69	3 3.05
	60-79	542	0.00	1.92 - 2.54	1.69 - 2.12	0.81 - 1.07	1.15 - 1.52	1.83 1.69 - 2.18 means were n	2.27 - 3.06	3.20 - 4.17	3.81

Main Sources of Exposure to Aluminum **Food** is the primary source of aluminum for most healthy • people: the typical American diet contributes about 5 mg/d to human exposure • Drinking water contributes much less Al than food: about 0.2 mg/d at the WHO drinking water guideline Non-prescription medicines can lead to much higher • exposures: 120-7,200 mg/d for antacids and 200-1,000 mg/day for buffered aspirin Occupational exposures can also be appreciable: 3-21 • mg/d for AI smelting or welding Other sources, including cosmetics and anti-perspirants, ٠ are comparatively small 🛍 uOttawa McLaughlin Centre for Population Health Risk Assessment

Estimates and Assumptions in Assessing Copper Intake

2	T1 (kg) 82.2	(days) NA	(days) 42	NS/NA	NS	NA	82.2	NA	N
2	61.3	NA	42	NS/NA	NS	NA	61.3	NA	N.
Jo need to onstant.	estimate amour	t of copper in fe	ed consumed – expo	sure was given v	ia a capsule with o	copper content repor	ted in milligrams per	t day. Weight and ag	e is assumed to be
6	70	NA	84	NS/NA	NS	NA	70	NA	N
Veight not : 10	given but assun 0.06	ed to be 70kg. 1 27	No need to estimate : 30	amount of coppe NS/NA	er in feed consumer 57	e – exposure was giv 42	en via a capsule with 0.165	copper content repo	orted in milligrams N
	orted at onset -	age and weight a	t mid-point estimate	d from Poiley (19	972) based on spe	cie, strain and weight	. Consumption of fe	ed based on NAS (19	972) estimates by
	and weight. 70	NS	28	NS/NA	NA	NS	70	NA	, ,
pecies, sex 14	and weight. 70	NS	28	NS/NA	NA	NS nount of copper con			, ,
pecies, sex 14	and weight. 70	NS	28	NS/NA	NA				N
14 Veight at or	and weight. 70 nset assumed to	NS be 70kg for adul	28 It male. Weight and	NS/NA age is assumed to	NA o be constant, An	nount of copper con	sumed provided in t	ne article.	N
14 Veight at or 20	and weight. 70 nset assumed to NS	NS be 70kg for adul 21	28 It male. Weight and 7	NS/NA age is assumed to NS/NA	NA o be constant, An 28	nount of copper con 24.5	sumed provided in ti 69.26	ne article. 9	N N N
vecies, sex 14 Veight at or 20 20	and weight. 70 nset assumed to NS NS	NS be 70kg for adul 21 21	28 It male. Weight and 7 14	NS/NA age is assumed to NS/NA NS/NA	NA D be constant, An 28 35	nount of copper con 24.5 28	sumed provided in th 69.26 79.86	ne article. 9 12	N N N N
<u>pecies, sex</u> 14 <u>Veight at or</u> 20 20 20	and weight. 70 nset assumed to NS NS NS	NS be 70kg for adul 21 21 21	28 It male. Weight and 7 14 21	NS/NA age is assumed to NS/NA NS/NA NS/NA	NA b be constant, An 28 35 42	nount of copper con 24.5 28 31.5	sumed provided in th 69.26 79.86 99.68	ne article. 9 12 15	N N N N N
veight at or 20 20 20 20 20	and weight. 70 nset assumed to NS NS NS NS	NS be 70kg for adul 21 21 21 21 21	28 It male. Weight and 7 14 21 28	NS/NA age is assumed to NS/NA NS/NA NS/NA NS/NA	NA 28 35 42 49	nount of copper con 24.5 28 31.5 35	sumed provided in th 69.26 79.86 99.68 119.5	ne article. 9 12 15 16	N N N N N N N
recies, sex 14 Veight at or 20 20 20 20 20 20 20 20 20 20	and weight. 70 nset assumed to NS NS NS NS NS	NS be 70kg for adul 21 21 21 21 21 21 21	28 It male. Weight and 7 14 21 28 35	NS/NA age is assumed to NS/NA NS/NA NS/NA NS/NA NS/NA	NA p be constant, An 28 35 42 49 56	nount of copper con 24.5 28 31.5 35 38.5	sumed provided in tl 69.26 79.86 99.68 119.5 139.34	ne article. 9 12 15 16 17	N N N N N N N N N N N N N N

Seven Level Severity Scoring System for Copper Toxicity due to Excess and Deficiency

	Severity Score (S)	Physiological Response
CY	6	Death
DE FI CIENCY	5	Serious irreversible gross deficiency
CI	4	Reversible gross deficiency
FI	3	Metabolic perturbation
DE	2	Early biological indicators of defient Cu levels
	1	Homeostatic adaptations to low intakes
	0	No effect
	1	Homeostatic adaptation to high intakes
	2	Early biological indicators of accumulated Cu
SS	3	Metabolic perturbation
CE	4	Reversible gross excess
EXCESS	5	Serious irreversible gross excess
	6	Death

