

2015/SOM3/CD/WKSP/018

Case Study - Deriving Site-Specific Water Quality Criteria and Safe Thresholds for Metals Based on Bioavailability to Aquatic Organisms

Submitted by: Australia

Workshop on Metals Risk Assessment Cebu, Philippines 28-29 August 2015

Case Study - Deriving site-specific water quality criteria and safe thresholds for metals based on bioavailability to aquatic organisms

Problem Statement: The total concentration (or the acid-recoverable concentration) of a metal in surface waters has historically been the easiest form to measure reliably and repeatably in aquatic environments. However, since the 1990s, total metal concentrations in surface waters have proven to be very poor predictors of potential toxicity to aquatic organisms, and thus are not useful for either developing, or comparing to water quality criteria.

Scientific Issues: The potential toxicity of metal in surface waters to an organism is controlled by a number of processes: the concentration of free metal ions dissolved in the water; the complexation of some fraction of these free metal ions to natural binding agents in the water (e.g., natural organic matter); and, in the organism, the competition of other natural constituents (cations from Hardness (e.g., calcium) and acidity (hydrogen ion) for binding sites, on gills and other metal binding sites ("biotic ligand" sites on the organism). The fraction of the total metal in the water that actually can bind to these "biotic ligand" sites is the bioavailable fraction of metal. The bioavailable fraction of a metal to an organism (and the associated risk of toxicity) depends heavily on both the surface water's natural chemistry, and the different sensitivities of the organisms in the water. The metal's bioavailability and organism sensitivity are typically measured in controlled laboratory tests in standard water chemistries, also

types in an area (a country, for instance), and most recently, predicted with well-validated chemical speciation and organism binding models, like "biotic ligand models" or BLMs, that can be used to establish locally-protective water quality criteria, or to conduct local risk assessments for aquatic communities.

Current risk assessment: Safe thresholds for metals have traditionally been set to protect the most sensitive organisms, using tests in standard laboratory waters that maximize the bioavailability of the metals. These safe thresholds are then used to set country-wide water quality criteria, and as No-Effect Concentrations used for comparison to ambient metal concentrations, for risk assessments. These single-value safe thresholds are conservatively protective, but are usually grossly overprotective for areas where local water chemistries reduce metal bioavailabilities. Further, metals are naturally found everywhere in natural waters, and some of these single-value safe thresholds may be at or below natural metal concentrations. Thus, this conservative approach of comparison of local measurements to a single threshold may erroneously indicate the need for risk management, when in fact thee local metal background, plus any other added metal, may be below a local safe threshold determined by considering bioavailability factors.

Approaches in the US (and US States), Australia/New Zealand, and the European Union (and its Member States) have been evolving since the 1990s to use stepwise tiered approaches, beginning with comparison of measured total metal concentrations in a water body and comparison to a single-value conservative National criteria, then if needed, comparison of the dissolved fraction of metal to the National criteria, then if needed, measurement or prediction of the bioavailable fraction of metal in the water and comparison to an estimate of the bioavailable safe metal threshold.

Discussion questions:

1. What are the challenges to shift from total metal concentration to addressing bioavailability of metals in aquatic criteria?

2. Are the tiered approaches presented a process to develop improved methods for metal criteria?

Example: comparison of the tiered approaches being adopted in the US, Australia, and the European Union:

Step	US Approach (US EPA	Australia-New Zealand	European Union
	guidance)	Approach	Approach
Step	Identify goals for	Identify goals for	Identify goals for
1	protection	protection	protection
Step	Identify waters, and	Identify waters, and	Identify waters, and
2	design sampling plan	design sampling plan	design sampling plan
	including total metals,	including total metals,	including total metals,
	dissolved metals,	dissolved metals, natural	dissolved metals,
	natural water chemistry	water chemistry	natural water chemistry
	(Hardness, pH,	(Hardness, pH, NOM/DOC,	(Hardness, pH,
	NOM/DOC,))	NOM/DOC,)
Step	Identify conservative	Identify conservative	Identify/develop
3	(national) Water Quality	(national) Water Quality	generic Environmental
	Criteria (WQCs), for	Guidelines (WQGs), for	Quality Standard (EQS),
	metals: criteria adjusted	metals: criteria adjusted	based on bioavailability
	by water Hardness)	by water Hardness	in sensitive waters
Step	Compare	Compare measurement(s)	
4	measurement(s) of Total	of Total Metal to Hardness-	
	Metal to WQC	adjusted WQG	
	(abandoned by EPA in		
	1993; replaced by Step		
	5)		
Step	If exceeded, compare	If exceeded, compare	Compare dissolved

5	dissolved metal to WQC	dissolved metal to WQG	metal to Generic EQS
			(bioavailable)
Step 6	 If exceeded, determine local safe threshold based on site- specific toxicity estimate(s): Use sensitivity of local (not national) species (EPA "Recalculation Procedure") Test local sensitive species in local waters (EPA "Water Effect Ratio") to experimentally determine metal bioavailability Enter local water chemistry data into Biotic Ligand Model (BLM) to predict bioavailable metal concentration 	 If exceeded, determine local safe threshold based on site- specific metal speciation: Local metal speciation measurements Toxicity testing (e.g., in local waters) Speciation and other modeling 	If exceeded, use user- friendly BLM-based look- up tool ("Bio-Met") to predict local bioavailability
Step	If exceeded, develop	lf exceeded, develop	lf exceeded, perform
7	options for reducing	options for reducing point-	other refinements based
	point-source discharges	source discharges and	on local conditions
	and runoff, until local	runoff, until local safe	
	safe threshold is	threshold is achieved	
	achieved (EPA "Total		
	Maximum Daily Load"		
	identification)		