

2017/EWG/EGEEC50/007

#### Technical Reference on Harmonization of Energy Efficiency Test Methods of Refrigerators Towards the New IEC 62552 Among APEC Region

Purpose: Information Submitted by: China



50<sup>th</sup> Expert Group on Energy Efficiency and Conservation Meeting Moscow, Russia 6-7 October 2017



# Technical Reference on Harmonization of Energy Efficiency Test Methods of Refrigerators towards the NEW IEC 62552 among APEC Region

Project Overseer: Ms. Zhang Shaojun

Project Contact: Ms. An Min

March 29, 2017
49th Meeting of APEC-EGEE&C
Jeju, Korea





## **Contents**



- Project Introduction
- Project Outputs

## 1- Project Introduction



#### The **Overall Objective** is:

To facilitate energy saving technology innovation for refrigerators and free trade in the APEC region by helping harmonizing energy efficiency testing methods for refrigerators with the new IEC62552 Standard, and by supporting the development of an effective management and inspection environment in APEC.

**Duration:** Sep, 2014 to Apr, 2016.

## 1- Project Introduction

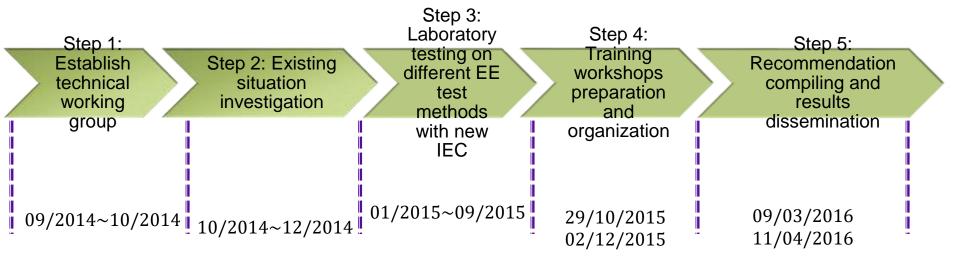


#### **Specified Objectives are:**

Objective 1:

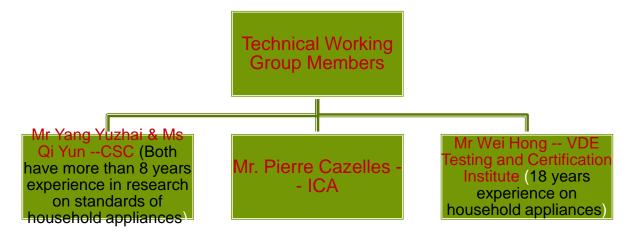
to identify commonalities and differences between the new IEC 62552 standard and energy efficiency testing standards for refrigerators currently used in APEC economies;

**Objective 2:** 


to determine pathways for the harmonization of energy efficiency testing methods of APEC economies and the new IEC 62552-3 for refrigerators;

**Objective 3:** 

to build capacities and awareness of APEC region's stakeholders and synergize their efforts related to the harmonization of testing standards for refrigerators.




#### **Action Plan**



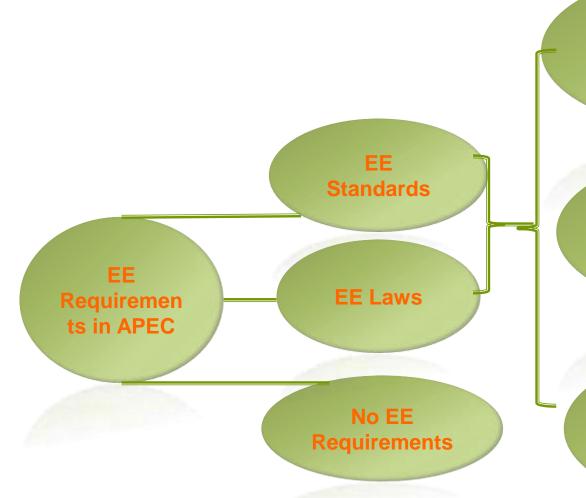
## Output 1: Establish technical working group










#### Advantages of IEC 62552:2015:



- Appliances are tested in empty condition, which can fast to achieve a stable state
- Tests are to be performed at two ambient temperatures (16°C and 32°C), which allows an accurate estimation of energy use across a rang of ambient temperatures;
- Load processing test considers the user interact, which more close to the real usage of refrigerator
- Detail specification for sensors location makes appliance setup more clearly
- A new adaptive test algorithm is introduced in energy consumption testing, which makes energy efficiency test more flexible and shortens the test period;
- Volumes measurement will be based on the 'cooled volume'

**Output 2: Desktop Research Report** 

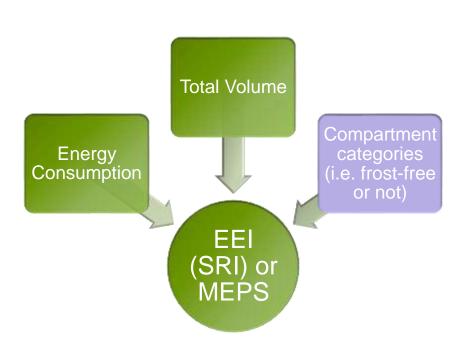




#### EEI (SRI) & MEPS:

Australia, New Zealand, China, Malaysia, Singapore, Thailand, andVietnam

#### **MEPS-ONLY:**

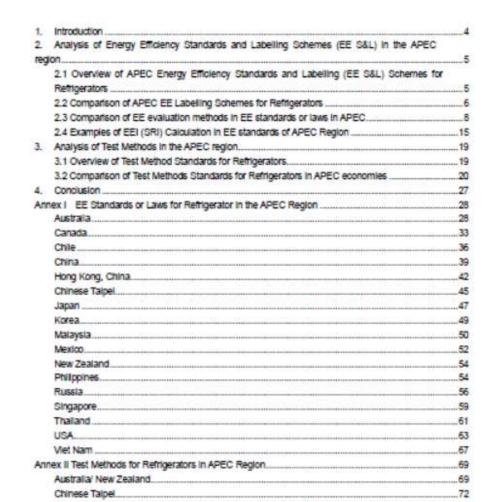

Canada, Japan, Mexico, USA

#### EEI (SRI) -ONLY:

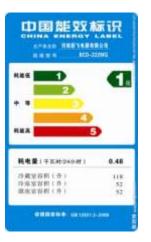
Chile, Hong Kong China, Philippines, Russia

## **Output 2: Desktop Research Report**






# **Key Elements in Testing Methods:**


- 1. Test conditions
- 2. Measuring instruments
- 3. Installation of refrigerators
- 4. Determination method of the energy

#### **Output 2: Desktop Research Report**

#### Table of Contents









**PRC** 

7 appliances (compartment) categories 3 appliancescategories and7 compartmentcategories

### **Output 3: Laboratory Testing Report**

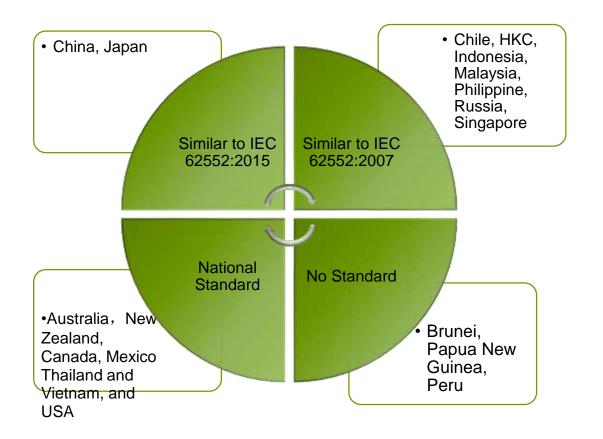















Upright Refrigeratorfreezer

Upright Frost-free Refrigerator-freezer

#### **Output 3: Laboratory Testing Report**



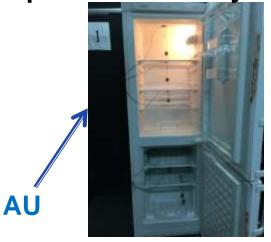


# **Key Elements in Testing Methods:**

- 1. Test conditions
- 2. Measuring instruments
- 3. Installation of refrigerators
- 4. Determination method of the energy

## **Output 3: Laboratory Testing Report**




|                                 | Upright Refrigerator | Upright Refrigerator-freezer | Chest Freezer | Upright Frost-free Refrigerator-freezer |
|---------------------------------|----------------------|------------------------------|---------------|-----------------------------------------|
| Model                           | BC-92                | BCD-200                      | BD-295        | BCD-322W                                |
| Climate class                   | ST                   | ST                           | ST            | ST                                      |
| Temperature Control Device      | Mechanical           | Mechanical                   | Mechanical    | Electronical                            |
| Volume (fresh food/frozen food) | 92L                  | 137L/63L                     | 295L          | 234L/88L                                |
| Related Energy Consumption      | 0.40 kWh/24h         | 0.50 kWh/24h                 | 0.90 kWh/24h  | 0.76 kWh/24h                            |
| Manufacture                     | Hisense              | Siemens                      | LG            | Siemens                                 |

| Items Standard             | IEC<br>62552:2015 | IEC<br>62552:2007 | USA standard | AU standard  |
|----------------------------|-------------------|-------------------|--------------|--------------|
| Daily energy consumption   | √                 | <b>V</b>          | <b>√</b>     | √            |
| Annual energy consumption  | V                 | Δ                 | Δ            | Δ            |
| Volume                     | $\sqrt{}$         | <b>V</b>          | $\checkmark$ | $\checkmark$ |
| EEI                        | √1)               | √2)               | _            | V            |
| Energy Efficiency<br>Grade | √1)               | √2)               | _            | √            |
| MEPS                       | √1)               | √2)               | V            | V            |

Note: 1) Calculated according to GB 12021.2-2015;

2) Calculated according to GB 12021.2-2008.

**Output 3: Laboratory Testing Report** 











IEC 62552:2015

**USA** 

IEC 62552:2007
Test loading view of refrigerator-freezer

#### **Output 3: Laboratory Testing Report**





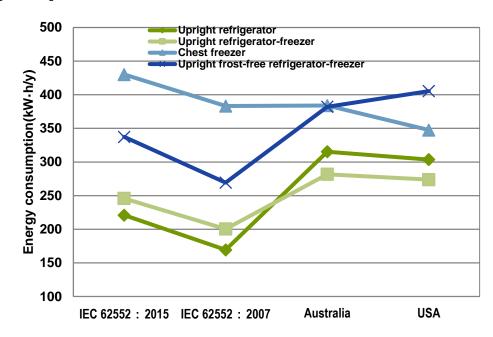




**USA** 



IEC 62552:2007


Test loading view of frost free refrigerator-freezer

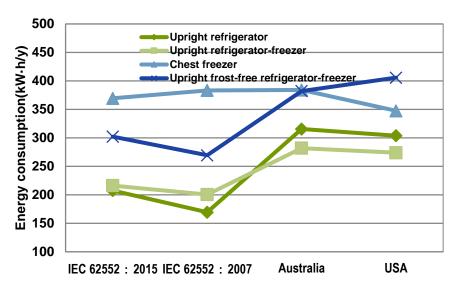
#### **Output 3: Laboratory Testing Report**

Annual Energy
Consumption test results
(IEC 62552-2015 with load processing)

&

Deviation of annual energy consumption for different test methods with IEC 62552-2015




| Test standards Appliance                    | IEC 62552:2007 | AU     | US     |
|---------------------------------------------|----------------|--------|--------|
| Upright refrigerator                        | -23.4%         | 42.6%  | 37.4%  |
| Upright refrigerator-freezer                | -18.5%         | 14.6%  | 11.4%  |
| Chest freezer                               | -10.9%         | -10.7% | -19.2% |
| Upright frost-free refrigerator-<br>freezer | -20.1%         | 13.3%  | 20.2%  |

#### **Output 3: Laboratory Testing Report**

Annual Energy Consumption test results (IEC 62552-2015 without load processing)

&

Deviation of annual energy consumption for different test methods with IEC 62552-2015 without load processing



| Test Standards Appliance                | IEC<br>62552:2007 | AU    | US    |
|-----------------------------------------|-------------------|-------|-------|
| Upright refrigerator                    | -18.3%            | 52.1% | 46.4% |
| Upright refrigerator-freezer            | -7.3%             | 30.3% | 26.5% |
| Chest freezer                           | 3.8%              | 4.0%  | -6.0% |
| Upright frost-free refrigerator-freezer | -10.8%            | 26.5% | 34.3% |

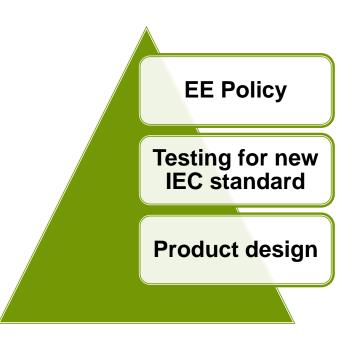
| Test                         | Additional energy |                |
|------------------------------|-------------------|----------------|
| Standards Appliance          | for load          | Deviation Rate |
|                              | processing        |                |
| Upright refrigerator         | 13.602            | 6.2%           |
| Upright refrigerator-freezer | 29.661            | 12.1%          |
| Chest freezer                | 60.774            | 14.1%          |
| Upright frost-free           | 35.275            | 10.5%          |
| refrigerator-freezer         |                   |                |

#### **Output 3: Laboratory Testing Report**

Philosophy of analyzing **key impacting factors** of energy consumption test methods is to choose two standards with similar certain testing conditions but one or two main different testing conditions, and then to understand the different testing condition's impacts on energy consumption.

Example: compartment temperature impacts for chest freezer

| Elements standards                                           | IEC 62552:2015                 | AU                  |
|--------------------------------------------------------------|--------------------------------|---------------------|
| Room test ambient temperature                                | Same (32.0°C)                  | Same (32.0°C)       |
| Target temperature of frozen-food comp.                      | Same(-18.0°C)                  | Different (-15.0°C) |
| Storage plan of frozen-food comp. storage temperature sensor | Same                           | Same                |
| Frozen-food comp. storage temperature sensor                 | Same(Cylinder)                 | Same(Cylinder)      |
| Tested daily energy consumptions, kWh/24h                    | 1.309                          | 1.052               |
| Deviation:                                                   | (1.309-1.052)/1.309*100%=19.6% |                     |


#### **Output 3: Laboratory Testing Report**

Key Influencing Factors for Energy Consumption Testing Results When Harmonizing to the NEW IEC 62552:

| Key influencing factors                                                                                                        | Compartment or appliance                         | Result               | Compared standards               |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|----------------------------------|
| Ambient temperature <sup>1)</sup>                                                                                              | refrigerator                                     | +4.5% by 1K increase |                                  |
|                                                                                                                                | freezer                                          | +3.0% by 1K increase | IEC 62552:2015 (16°C-32°C)       |
|                                                                                                                                | refrigerator-freezer                             | +2.4% by 1K increase |                                  |
| Target temperature <sup>2)</sup>                                                                                               | fresh-food comp.                                 | +9% by 1K decrease   | IEC 62552:2015 (interpolation )  |
| raiget temperature <sup>27</sup>                                                                                               | frozen-food comp.                                | -6.5% by 1K increase | IEC 62552:2015-Australia         |
| Storage temperature sensor and storage plan <sup>3)</sup>                                                                      | fresh-food comp.                                 | +2.3%                | IEC 62552:2015(at 32°C) - US     |
| Storage temperature sensor (cylinder instead of M package) and empty load <sup>4)</sup>                                        | frozen-food comp.                                | -3.9%                | IEC 62552:2015(at 32°C) - US     |
| Determination of frozen-food<br>compartment temperature<br>(average temperature instead<br>of maximum M package) <sup>5)</sup> | frozen-food comp.                                | -4.1%                | IEC 62552:2015-IEC 62552:2007    |
| Twice tests adaptability for one sample at different                                                                           | refrigerator                                     | +1.7%                | IEC 62552:2015-IEC 62552:2007    |
|                                                                                                                                | refrigerator-freezer(single temperature control) | +13.2%               | IEC 62552:2015-IEC 62552:2007    |
| ambient temperatures                                                                                                           | frost-free refrigerator-freezer                  | +5.2%                | IEC 62552:2015-IEC<br>62552:2007 |

Output 4 &5: Training (2015-10-29 Hefei; 2015-12-02 Guiyang)





## **Output 6: Harmonization Roadmap to IEC 62552:2015**



**Key points** of Harmonization of energy efficiency test methods of refrigerators towards the new IEC 62552

#### **Policy Economy Technology** Trade demand Energy saving Government technology concerns Market development Energy development New standard efficiency labeling and understanding standard development

#### **Output 6: Harmonization Roadmap to IEC 62552:2015**



**Roadmap** of Harmonization of energy efficiency test methods of refrigerators towards the new IEC 62552 in APEC region takes **step by step** according to situation of each economy

- 1. Technical experts committee
- 2. Technical alliance

**Group A** with more developed market, more mature EE policy implementation circumstance and policy support

**Group B** with similar standard and EE labeling mechanism with Group A but in the economies with medium level of development of their market and EE policies

**Group C** in the stage of shaping their EE policies and actions

**Group D** with unique and mature standard and EE labeling mechanism and it is hard to harmonize new IEC standard for policy reason

## **Output 6: Harmonization Roadmap to IEC 62552:2015**



#### **Group A**



## **Output 6: Harmonization Roadmap to IEC 62552:2015**



#### **Group B**

Research the standard difference between their current EE test method and IEC 62552:2015

Investigate on how much impacts of IEC 62552:2015on their products' EE Grade compared with the current EE test method standard

Revise EE test method standard and labeling standard or laws by the government departments

Policy consultation and training of test methods understanding on the new IEC62552 can be supported by Group A

Prepare energy efficiency technology

## **Output 6: Harmonization Roadmap to IEC 62552:2015**



#### **Group C**

Taking into experience of Group A and B and their own circumstance, EE policies shall more shaped at first

After the EE policy going smoothly, the Group B's roadmap can be referred

#### **Output 7: Results Dissemination Workshop**

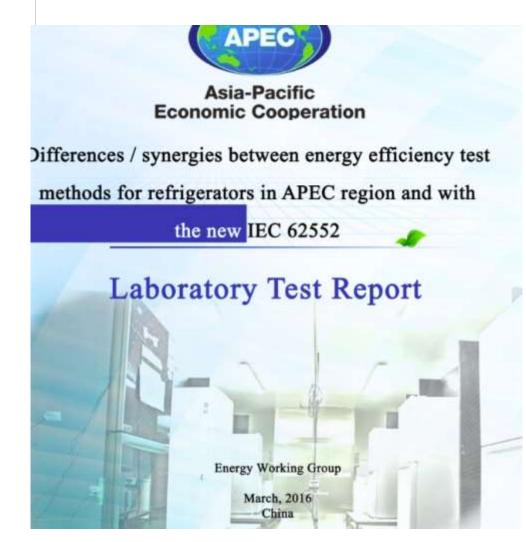
Shanghai Mar 9<sup>th</sup>, 2016 alongside with 2016 AWE (Appliance & Electronics World Expo.) and also in *Taichung* alongside the EGEE&C 47 meeting.





Positive feedback have been received from workshop survey and on-site Q&A session in AWE and in EGEE&C 47






Differences / synergies between energy efficiency test methods for refrigerators in APEC region and with the new IEC 62552

Desktop Research

**Energy Working Group** 

March, 2016





# Thank You!

Contact:
AN Min
+86 10 82961733
anmin@csc.org.cn



