

2017/EWG/EGNRET48/014

How to Achieve the Renewable Energy Goal in APEC Region: Long-Term Energy Outlook, Feed-In-Tariff and Variable Renewable Energy Promotion in Japan

Purpose: Information Submitted by: Japan

48th Expert Group on New and Renewable Energy Technologies Meeting Jeju, Korea 29-30 March 2017

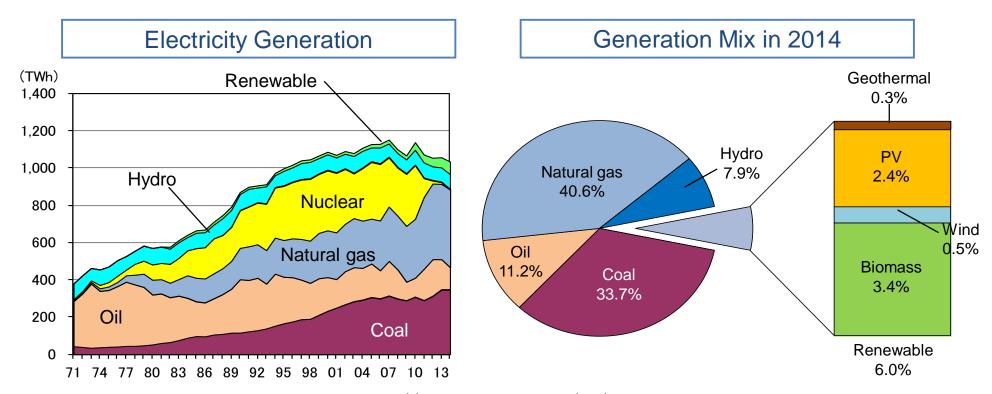
APEC EGNRET 48, Jeju, Republic of Korea

How to achieve the RE goal in APEC Region:

Long-term energy outlook, FIT and VRE promotion in Japan

March 29th, 2017

Takao Ikeda
The Institute of Energy Economics, Japan
(IEEJ)



- ◆Long-term energy outlook
- ◆ FIT revision

◆To promote VRE in Japan

Current Status in Japan (2014)

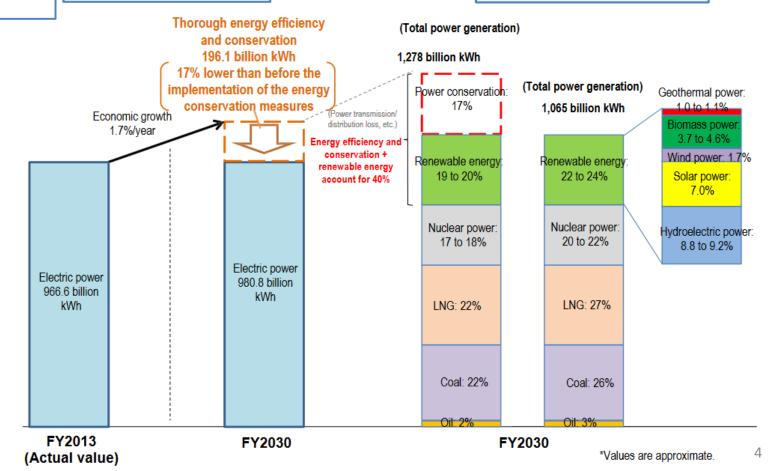
- Electricity generation mix in Japan
 - Fossil fuels: 85.5%, renewable: 6.0%
 - Solar photovoltaic (PV) is relatively high.
 - Nuclear → Gas (after Fukushima accident)

Source: IEA, World Energy Statistics and Balances 2016.

Long-Term Energy Supply and Demand Outlook (2015-2030)

- Japanese government has published in July in 2015
 "Long-Term Energy Supply and Demand Outlook" (2015-2030)
- This outlook is based on FY2013 data.

3 objectives for 2030


1. Energy independence	6 % ⇒ 25 %			
2. Generation cost reduction	- 5% (from 2013)			
3. CO ₂ emission reduction	- 26% (from 2013)			

Long-Term Energy Supply and Demand Outlook (2015-2030)

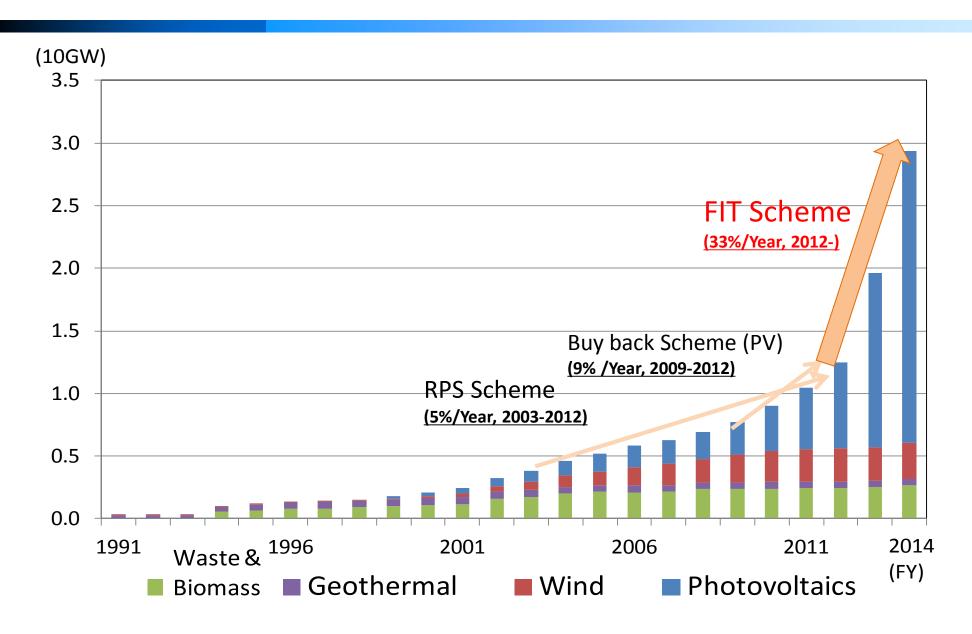
3 measures:

- ① Energy Saving
- 2 Renewable
- 3 Nuclear

- ◆Long-term energy outlook
- ◆FIT revision

◆To promote VRE in Japan

FIT Tariff in Japan (FY2012-FY2016)


• FIT rate setting policy:

Should be generous to the investors for the first 3 years (2012/7-2015/7)

Purchase prices (JPY/kWh) (tax excluded)							d)			
			FY2012	FY2013	FY2014	FY2 Apr Jun.	015 Jul Mar.	FY2016	Purchase period	
	Less than 10	kW	42	20	27	33		31		
Solar	when output control system are required		42	38	37	35		33	10 years	
	Less than 10 kW (+ energy storage system)		34	31	30	27		25		
	when output control system are required					2	29			
	10 kW or more		40	36	32	29	27	24	20 years	
	Onshore	Less than 20 kW	55	55	55	5	5	55		
Wind	Offstiore	20 kW or more	22	22	22	2	2	22	20 years	
	Offshore				36	36		36		
Geothermal	Less than 15,000 kW		40	40	40	40		40	15 years	
Geotherman	15,000 kW or more		26	26	26	26		26		
	Fully new facilities	Less than 200 kW	34	34	34		4	34]	
		200-1,000 kW	29	29	29	2	9	29		
Hydro		1,000-30,000 kW	24	24	24	2	4	24	20 years	
Hydro	Utilize	Less than 200 kW			25	25 21		25	20 years	
	existing	200-1,000 kW			21			21		
	headrace	1,000-30,000 kW			14	14		14		
Biomass	Wood (general), agricultural residues		24	24	24	24		24		
	Forest	Less than 2,000 kW	32	32	32	4	40 40]]	
	residues	2,000 kW or more				3	2	32	20 years	
	Wood waste from buildings		13	13	13	1	3	13	20 years	
	Municipal waste		17	17	17	1	17 17			
	Biogas		39	39	39	39		39		

Source: METI 6

Installed Capacity of Renewable Electricity

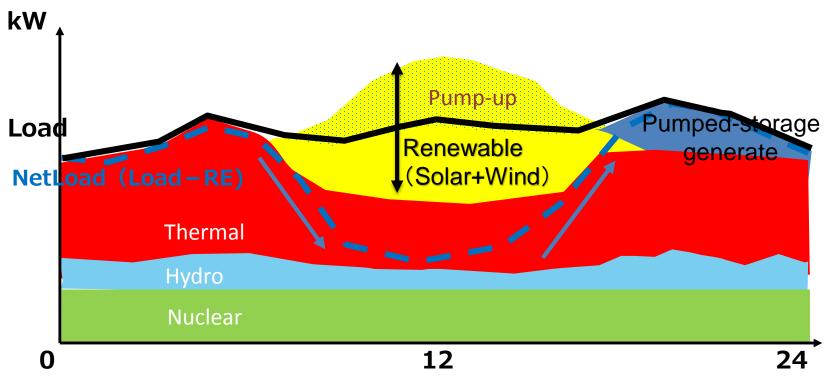
FIT Tariff after FY2017

Purchase prices (JPY/kWh)								
			FY2017			,	Purchase	
			Apr Sep.	Oct Mar.	FY2018	FY2019	period	
	Less than 10 kW			28		24		
Solar	when output control system are required			30 25		26	10 years	
	Less than 10 kW (+ energy storage system)					24		
	when output control system are required			27		26		
	10-2,000 kW			1			20 years	
	2,000 kW or more			Tender				
	Less than 20 kW			5				
Wind	Onshore	20 kW or more	22	21	20	19	20 voors	
VVIIIG	Offstiore	replace	1	8	17	16	20 years	
	Offshore	20 kW or more	36 36		36	36		
	Less than 15,000 kW		40 30		40	40		
	replace whole equipment				30	30		
Geothermal	replace above-ground equipement			19		19	15 years	
Geotherman	15,000 kW or more			26		26		
	replace whole equipment			20		20		
	replace above-ground equipement		12		12	12		
		Less than 200 kW	34		34	34		
	Fully new	200-1,000 kW	2	9	29	29		
	facilities	1,000-5,000 kW	27		27	27		
Hydro		5,000-30,000 kW	24	20	20	20	20 years	
Tiyaro	Utilize	Less than 200 kW	2	5	25	25	20 years	
	existing	200-1,000 kW		1	21	21		
	headrace 1,000-5,000 kW		15		15	15		
	channels	5,000-30,000 kW	12		12	14		
	Wood	Less than 2,000 kW	24		24	24		
	(general)	(general) 2,000 kW or more		21	21	21		
	Forest Less than 2,000 kW		40 32		40	40	20 years	
Biomass	residues 2,000 kW or more				32	32		
	Wood waste from buildings			3	13	13		
	Municipal waste			17 17 17		17		
	Biogas		39		39	39		

Source: METI

- ◆Long-term energy outlook
- **♦** FIT revision

◆To promote VRE in Japan

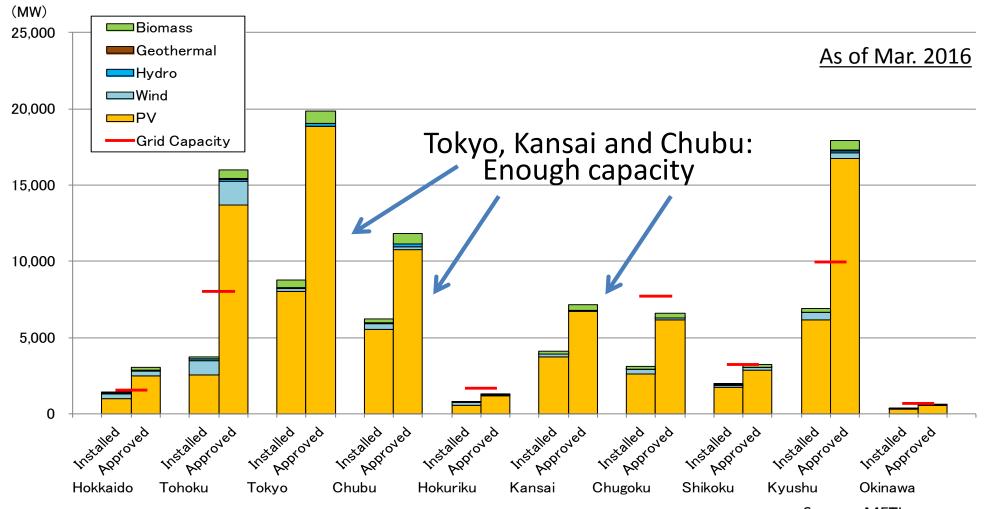

Grid system in Japan

There are 10 electric power companies in Japan. They are responsible for the electricity supply in each area. → Small and narrow land area to manage Insufficient interregional connections Frequency difference between East and West → Difficult nationwide management trunk power line ⇒ <u>Small-scale grid management</u> 60Hz 50Hz frequency converter station frequency converter station ransformer substation trunk power line Tokyo Osaka

10

Challenges of power supply dispatching for the mass penetration of VRE: Variable Renewable Energy (1)

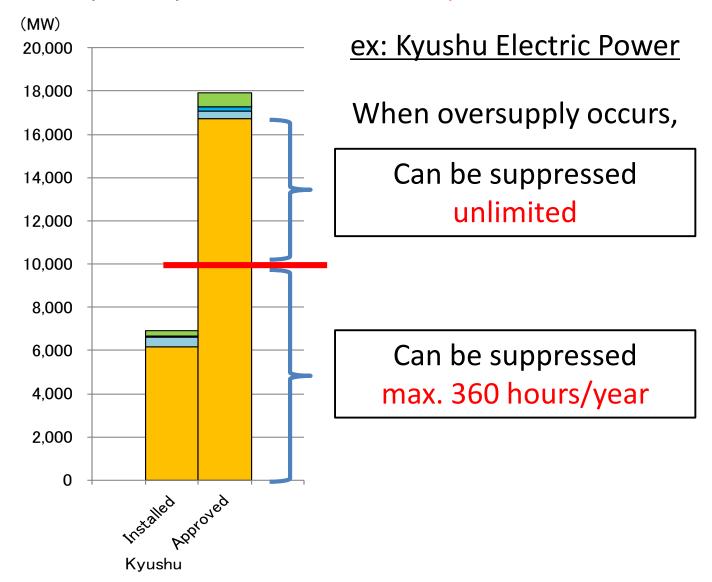
- Increase in proportion of Solar and wind during light load period
- •In the daytime, the supply-demand balance is maintained by the pump-up of pumped-storage power generation. As solar increases further, it is necessary to curtail solar power.
- •Net load sharply drops in the morning and rises sharply in the evening. This makes supply / demand balance difficult. (Duck curve problem)



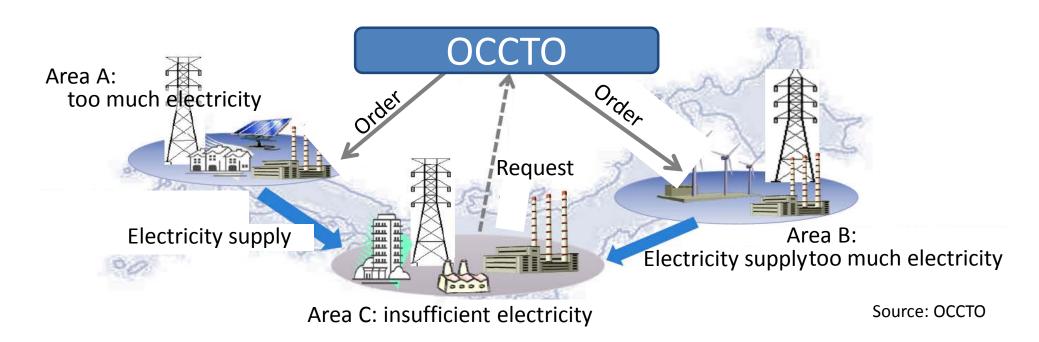
Exmple: Image of supply-demand balance in a day

Source: The Kansai Electric Power Co., Inc.

Challenges of power supply dispatching for the mass penetration of Variable Renewable Energy (2)

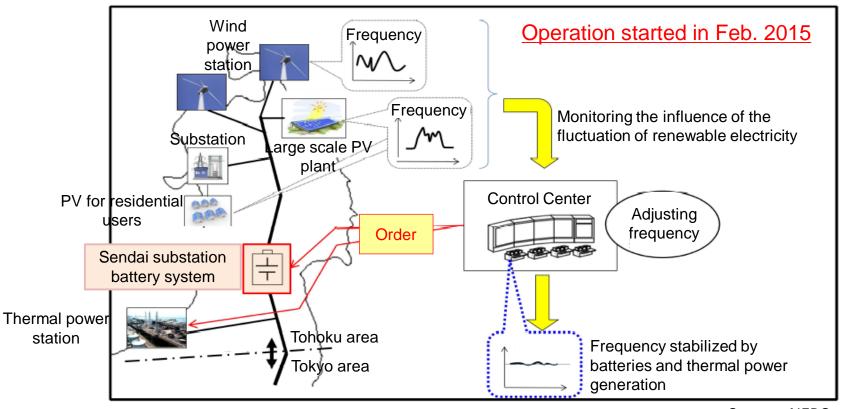

- Each power company (excl. 3) announces its own grid capacity.
- Approved PV projects is going over the grid connection capacity.

Source: METI


Challenges of power supply dispatching for the mass penetration of VRE : Variable Renewable Energy (2)

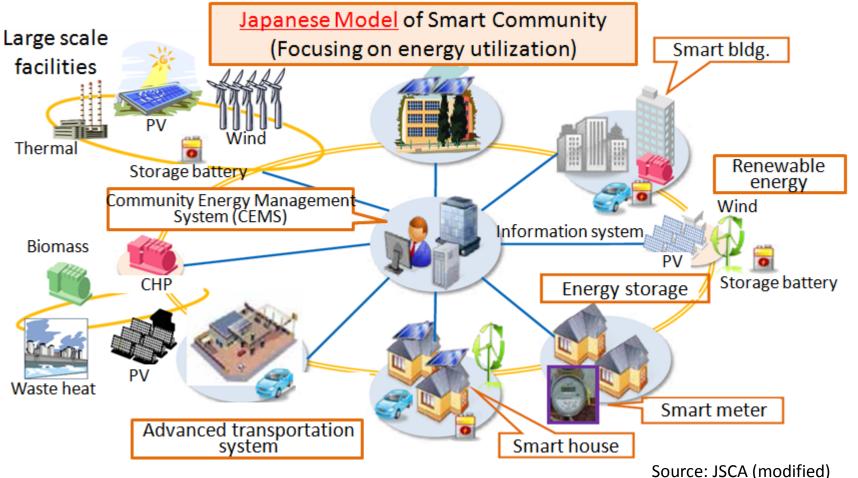
Suppression priority: thermal, nuclear, hydro > PV

Nationwide Grid Management (1)

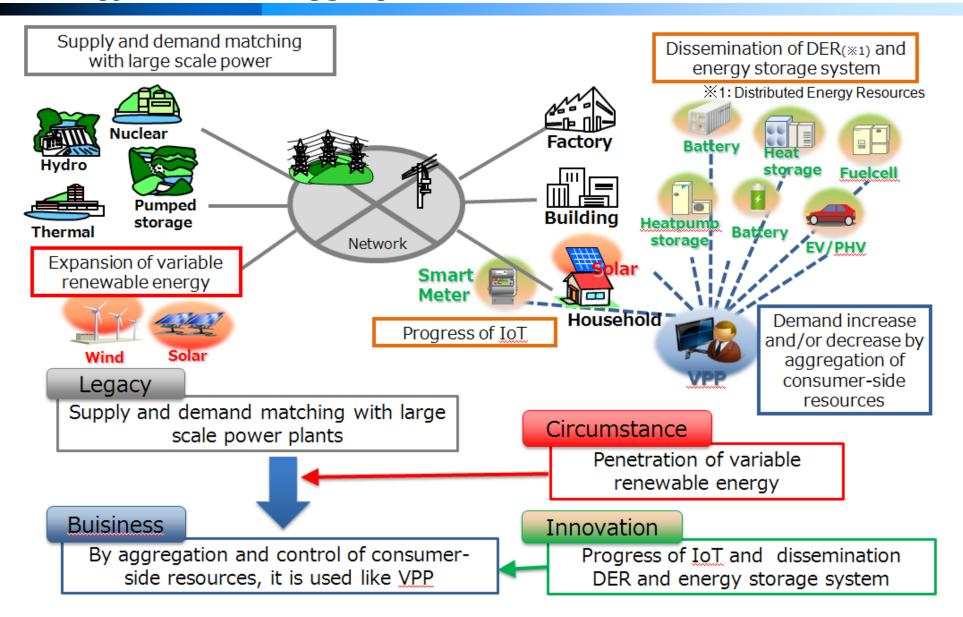

- OCCTO was established in 2015. (Organization for Cross-regional Coordination of Transmission Operators, JAPAN)
 - Electricity supply-demand balance
 - Frequency control for cross-regional operation
 - ⇒ enables to connect more renewable electricity

Nationwide Grid Management (2)

- Storage battery can increase the grid capacity, but expensive.
- There are demonstration projects in each part of Japan.


ex. Lithium Ion Battery Demonstration in Tohoku

Source: NEPC


Distributed and Smart Energy System (Smart Community demonstration projects FY2010-2014)

- Distributed renewable energy
- Efficient energy management (IoT, energy storage, etc.)
 - → Energy system less dependent on nationwide grid

VPP(Virtual Power Plant) demonstration project (FY2016-)

Energy Resource Aggregation Business

Thank you for your attention!