

2025/SOM3/EPWG/SDMOF/014

Agenda Item: S5.1.2

Korean Master Plan for Disaster and Safety Management Technology Development

Purpose: Information Submitted by: Korea

18th Senior Disaster Management Officials' Forum Incheon, Korea 31 July 2025

Korean Master Plan for Disaster & Safety Management Technology Development

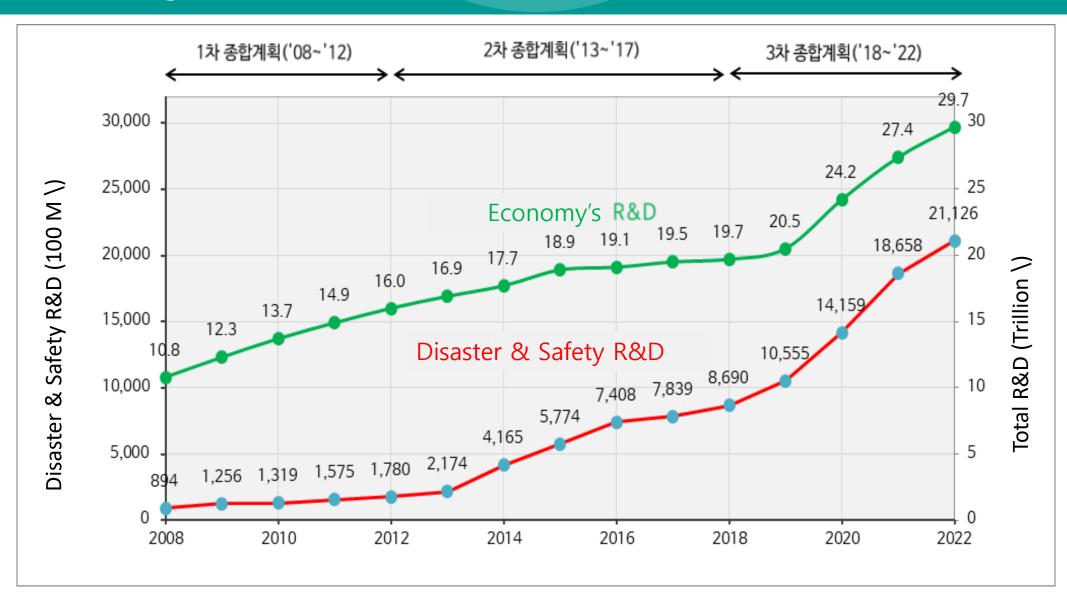
Ji-Bum Chung (Ulsan National Institute of Science and Technology)

Master Plan for Disaster & Safety Management Technology Development

3rd Master Plan

Find Solutions, Based on The Field
Solution Development and Applied Technology Innovation for Future Risk

Innovation Initiatives


Public-Private Cooperation
Enhanced R&D Collaboration

| Improved R&D Delivery | Rapid Field Deployment | System | Digital Platform Construction |

- Master Plan for Disaster & Safety Management Technology Development
- Established every 5 years in accordance with Article 71-2 of the "Framework Act on the Management of Disasters and Safety."
- Rapid Situational Management and Decision-Making for Emergency Operation
- Daily Safety Enhancement Technology
- Safe **Workplace** Creation
- Enhanced Disaster Prediction
- Climate Crisis Solutions
- Solutions for Emerging Health Threats
- Data, Network, Al

Efforts to Increase Science & Technology Budget for Disaster Management

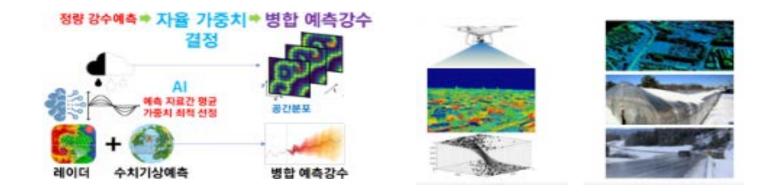
Rapid Situational Management and Decision-Making for Emergency Operation

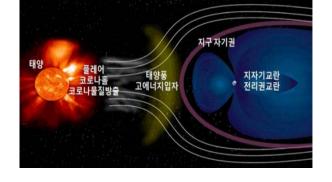
Fire Suppression in High-Rise Buildings Using Drones

Robot Technology for Emergency Management

Daily Safety Enhancement Technology

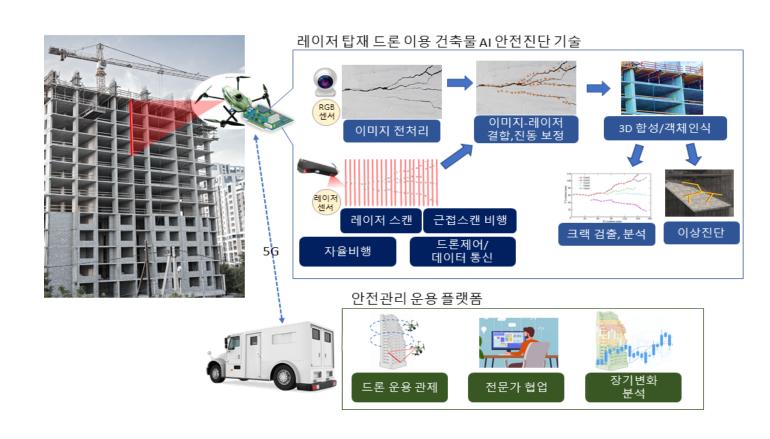
Cooling Vest for Heat-Related Illness Prevention


Traffic Accident
Prediction Technology



Road Surface Ice Management Technology

Enhanced Disaster Prediction & Climate Crisis Solutions



Rainfall and Heavy Snow Prediction Technology

Prediction of Earth's Radio
Environment Changes Due to
Solar Wind

Data, Network, Al

IoT Sensors

Building Safety Inspection Using AI

Best Practices Korea Safe-net & Early Warning (Wireless Emergency Alert)

Emergency Management & Multi-Agency Cooperation

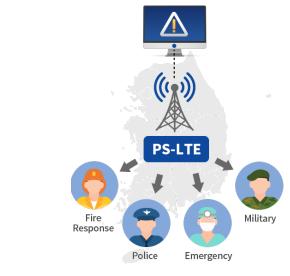
- Should be Fast and Efficient
- Need Cooperation with many agencies (Fire, police, Medical, Infrastructure, ...)
- In case of a Disaster, generally,
- Need multi-agency cooperation
- Need secure, stable, and efficient communication tools between agencies.
- However, they used their own radio equipment

Police
TRS(Trunked Radio System)

Fire VHF, UHF

Needs for effective multi-agency communication

Daegu subway accident, 2003


Sewol Ferry disaster, 2014

- 2002: Proposal for a integrated wireless communication network encompassing all central disaster-related agencies
- 2003: After Daegu fire, the plan was officially initiated.
- However, a decade-long conflict over wireless communication methods and costs.
- 2014: After Sewol Ferry disaster, decide **PS-LTE** method and initiated the project
- 2015 Implemented a pilot project in Gangwon Province.
- 2018 main project started, central region (2019), southern region (2020), and the capital region (2021)
- 2021: launched the service in May 2021.

Disaster and Safety Communications Network (Korea Safe-net) – PS-LTE

- Enables policemen, firefighters, and other groups to communicate efficiently using dedicated terminals.
- <u>Single communication network</u> on a economy-wide scale supporting one channel of command and control, and integrated response at disaster sites
- Fourth-generation wireless technologies, PS-LTE (Public Safety Long Term Evolution)
- Frequency Bands Allocation: 718~728 MHz, 773~783
 MHz
- Total Cost: approximately 1.1 B US\$

Cases in other economies (PS-LTE)

Emergency
Services Network

Category	Disaster Safety Network (Korea)	FirstNet (USA)	ESN (UK)
Implementing Organization	Government (Ministry of Interior and Safety)	Public Agency (Department of Commerce)	Government (Home Office)
Operations Management	Government (Ministry of Interior and Safety)	Private Entity (Contracted: AT&T)	Private Entity (Contracted: EE/BT)
Network Ownership	Government	Private	Private
Construction Completion Date	March 2021	Under construction/operatio n	Under construction (Scheduled for 2024)
Coverage	Economy-wide	4.41 million km² (76.2% of U.S. territory)	-
Frequency Securing	Dedicated Frequency	Dedicated Frequency	Shared with Commercial Frequencies

Korea Safe-net

ALL 4 One

Nationwide coverage, One seamless integrated service

- •High-performance base stations
- Mobile base stations (vehicle-mounted)
- •Railroad and aviation communication (LTE-M/R)
- Satellite communication

3 Operation centers Seoul, Daegu, and Jeju

Independently operation, But interconnected each other to backup each station.

Terminals and Dedicated Devices

- Smartphone terminals
- Wireless radio terminals
- Rugged tablets
- Dedicated Device
- Terminal Control System

Wireless Emergency Alert

EMERGENCY ALERT MESSAGE (CBS)

A disaster alert text message simultaneusly sent to mobile phones located in the affected area to enable prompt evacuation in case of an emergency.

*CBS (Cell Broadcasting Service): A mobile phone broadcast service at the base station level.

The government releases Public Warning Cell Broadcast Messages

Broadcast Entity, CBE

Process within 1 second

Telecom Operator Cell Broadcast Center, CBC

Public Application End

Processing Time
Around 3 seconds in average with 4G signal
Around 5 seconds in average with 3G signal

- Using data collected from KMA (earthquake, Typhoon, etc.)
- KMA and other government agencies send Emergency alerts through their integrated notification system.
- The emergency alert information is simultaneously sent to MOIS, broadcasting companies, and mobile communication companies.
- This allows broadcasting companies to issue emergency warnings through TV and radio,
- while each communication company sends WEA (Wireless Emergency Alerts) to the individuals' mobile phones.

Wireless Emergency Alert

 Capability of disaster detection and alert has continuously been upgraded since Gyeongju Earthquake (2016)

	Gyeongju Earthquake (2016)	Pohang Earthquake (2017)
Earthquake Occurrence	September 12, 2016 8:32:54 PM	November 15, 2017 2:29:31 PM
Initial detection	8:32:57 PM	2:29:34 PM
Emergency Alert	8:33:23 PM	2:29:53 PM
Emergency Alert Message Transmis sion	8:41:06 PM	2:29:57 PM
Time from Initial Observation to Emergency Alert	26 seconds	19 seconds
Time from Initial Observation to Alert Transmission	8 minutes 9 seconds	23 seconds

Thank you!

Ji-Bum Chung (learning@unist.ac.kr)